
스테핑 모터 가동용 시퀀스 기능 포함 펄스 컨트롤 L S I PCD46X1A 시리즈

> P C D 4 6 1 1 A P C D 4 6 2 1 A P C D 4 6 4 1 A

사용자 매뉴얼

[서론]

금번 [PCD46x1A시리즈]를 검토해 주셔서 대단히 감사합니다. PCD46x1A시리즈의 사용에 있어, 본 매뉴얼을 충분히 읽고, 충분한 이해 후 사용 부탁 드립니다.

또한 본LSI의 실제 장비 등에 관한 [취급상의 주의사항]에 대해서는, 본 매뉴얼 마지막에 기재되어 있습니다.

[주의사항]

- (1) 본 메뉴얼의 내용 전부 또는 일부를 무단으로 바꾸어 사용하는 것을 금지합니다.
- (2) 본 메뉴얼의 내용에 대해서는, 성능 그리고 품질의 향상에 따라, 예고없이 변경되는 경우가 있습니다.
- (3) 본 매뉴얼의 내용에 대해서는 만전을 기하고 있지만, 이해하기 어려운 점이나, 틀린 점, 기재 미스가 발견되면 연락 부탁 드립니다.
- (4) 사용한 결과의 영향에 대해서는 (3)에 해당되어도 책임을 지지 않으므로, 양해 바랍니다.
- (5) 본LSI는 민생기기에 사용되는 것을 의도하여 설계되었습니다. 높은 품질, 신뢰성이 요구되며, 그 고장이나 오작동이 직접적으로 인명에 피해를 주거나, 인체에 위험이 미치는 장치(원자력제어, 항공우주기, 교통신호, 연료제어, 각종 안전장치등)에 사용될 때에는 주의 바랍니다.

■본 매뉴얼 기재내용 설명

- 1. PCD46x1A란, PCD4611A/PCD4621A/PCD4641A 세가지를 합하여 표기한 것 입니다.
- 2. .단자명 끝에 "x"는 X축, "y"는 Y축, "z"는 Z축, "u"는 U축으로 표시합니다. PCD4611A는 단자 명 끝에 축 명칭은 없습니다. PCD4621A,PCD4641A와 비교 할 때는 X축이라고 생각 바랍니다.
- 3. SD.EL.PO신호 등의 +와 -의 두가지를 갖는 것으로 +,- 의 기재가 없는 것은 +,- 양쪽의 신호를 포함 하는 것을 의미 합니다.
- 4. 단자의 논리는 「표 3-1 PCD46x1A 단자 기능 일람표」에 기재 되어 있습니다.
- 5. Register나 command의 특정 bit를 (register/command명).(bit명)으로 표기 합니다. (예 : RMD.MSDE)

bit명이 일의 한 것에 대하서는, 일부 (register/command명)을 생략하는 곳이 있습니다.

- 6. Register의 bit 설명에서 "n"은 bit 위치를 "0"은 bit 위치와 쓰기 때 0이외 금지, 및 읽기 때 0 고정을 나타냅니다.
- 7. 특히 설명이 없는 한 manual 내에서 사용하고 있는 clock주기에 영향을 받는 시간 기술은 기준 clock = 4.9152[MHz]가 됩니다.
- 8. 수치의 값에 "b"가 붙어 있는 것은 2진수, "h"가 붙어 있는 것은 16진수를 표시하며,아무 것도 없는 것은 10진수를 표시 합니다.
- 9. 전기적 특성의 전류 값의 부호는 정수는 유입 전류 치, 부수는 유출 전류 치를 표시 합니다.

= = = 목 차 = = =

USER Manual
■ 처음에. 주의 사항
■ 본 Manual 기재 내용의 설명 목차
그시 그림 일람
표 일람
1. 개요•특징 1 -
1 - 1. 개요 1 -
1 - 2. 특징 1 -
2. 사양 2 -
3. 단자 3 -
3-1. 단자 배치도
3 - 1 -1. PCD4611A 단자배치도 3 -
3 - 1-2 . PCD4621A 단자배치도 4 -
3 - 1-3 . PCD4641A 단자배치도 5 -
3-2 단자 기능 일람 4. BLOCK 도
5. C P U I/F 12 -
5-1 CPU 접속 방법
5-1-1. 개요
5-1-1-1. CPU I/F 신호
5-1-1-2. CPU I/F의 선택
5-1-2. Parallal I/F
5-1-3. Serial I/F
5-2. Parallal I/F access 방법
5-2-1. Address map
5-2-2. Weight 제어
5-2-3. Command 쓰기 수순
5-2-4. Main status 읽기 수순
5-2-5. Register쓰기 수순
5-2-6. Register읽기 수순
5-2-7. 준비
5-3. Serial I/F access 방법
5-3-1. 축 선택 code
5-3-1-1. 축 선택 area
5-3-1-2. TYPE선택 area
5-3-1-3. Device 선택 area

5-3-2. 범용 write 조작	
5-3-2-1. Command 쓰기	
5-3-2-2. Register 쓰기	
5-3-3. 범용 read 조작	
5-3-3-1. Command 읽기	
5-3-3-2. Status 읽기	
5-3-3-3. Register 읽기	
5-3-4. 범용 port 상태 읽기	
5-3-5. Main status 읽기	
6. Command	
6-1. Start mode command	
6-2. 제어 mode command	
6-3. Register select command	
6-4. 출력 mode command	
7. Status	
7-1. Main status	
7-2. 확장 status	
7-3. 제품 정보 code	
7 6. 利日 6上 6006 8. Register	
o. Negister 8 - 1. Register 일람	- 22
8-2. Register 선택 code	22
8 - 3. Register 상세	23 -
8-3-1. RMV레지스터	23 -
8-3-2. RFL레지스터	
8-3-3. R F H 레지스터	
8-3-4. RUD레지스터 8-3-5. RMG레지스터	
8-3-6. RDP레지스터	
8-3-7 RIDL레지스터	
8-3-8 RENV레지스터	27
8-3-9. RCUN레지스터	28
8-3-10. RSTS모니터	
8-3-11. RIDC레지스터	
8-3-12. R I OP레지스터 8-3-13. R S P D 모 니 터	
8-3-14. RSPO레지스터	
8-3-15. R S P M 레 지 스 터	
	DA70133-1/4
). 동작 모드	35 -
9 - 1. 연속 동작 모드	35
Q-1-1 [+]반향 FH 정소 여소 도잔이 스수 메	

	9-1-2.[-] 방향 FH 정속 연속 동작의 수순 예		
	9-1-3.[+] 방향 FH 고속 연속 동작의 수순 예		
	9 - 2. 원점 복귀 모드	- 36	_
	9-2-1.[+] 방향 FH 정속 원점 복귀 동작의 수순 예		
	9-2-2.[+] 방향 FH 고속 원점 복귀 동작의 수순 예		
	9-2-3. 최대 이동량 관리 부 [+]방향 FH 정속 원점 복귀 동작의 수순 예		
	9 - 3. 위치 결정 모드	- 39	_
	9-3-1. [+] 방향 1000 pulse FH 고속 위치 결정 동작의 수순 예		
	9 - 4. 타이머 모드	- 40	_
	9-4-1. 100[ms]의 timer 로서 사용 할 때의 수순 예		
1	0. 속도 패턴	_ /1 -	_
'	0. ¬ㅗ 페르		
	T 0 - T. 속도 패턴(DummyCommand기재 정략) 1 0 - 2. 속도 패턴 설정		
		- 42	
	10-2-1. 가감 속 속도 patten 설정 예	4 5	
	1 0 - 3. 동작중의 속도 패턴의 변경에 대해서	- 45	
	10-4. Slow down point 자동 설정 때의 속도 patten 변경의 제한	4.0	
1	1. 기능 설명		
	1 1 - 1. 리셋		
	1 1 - 2. 공전 펄스 출력		
	1 1 - 3. 외부 start 제어		
	1 1 - 4. 외부 stop 제어		
	1 1 - 5. 출력 펄스 모드		
	1 1 - 6. 여자(励磁) 시퀀스 출력		
	1 1 - 7. 기계계 외부 입력 제어	- 49	_
	11-7-1. End limit 검출 신호		
	11-7-2. Slow down point 검출 신호		
	11-7-3. 원점 신호		
	1 1 - 8. Interrupt 리퀘스트 신호 출력		
	1 1 - 9. 범용 포트		
	11-9-1. OTS단자		
	11-9-2. U / B, F / H단자		-
	11-9-3. P1~P4단자	5 1	_
	11-10. 공용 포트		
	11-10-1. SP0 ~ SP5 단자		
	11-11. 동작 Timing		
	11-11-1. 가 감속 동작 timing (위치 결정 동작)		
	11-11-2. Start timing		
	11-11-2-1. Command start timing		
	11-11-2-2. 외부 start timing		
	11-11-3. 정지 timing		
	11-11-3-1. 위치 결정 동작 완료 timing		
	11-11-3-2. STP.ORG.EL 신호 입력에 의한 정지 timing		
	11-11-4. Pulse 출력, 시켄스 출력 timing		
	11-11-5. 범용 포트 출력 timing		
	11-11-6. Start 보류 정지 timing		
	11-11-6-1. Start 보류 정지 후 STA 신호 입력		
	11-11-6-2. Start 보류 정지 후 start command 쓰기		

1	2. 전기 적 특성	53	, <u> </u>
	1 2 - 1. 절대 최대 정격	- 53	3 –
	1 2 - 2. 추천 동작 조건	- 53	3 –
	1 2 - 3. D C 특성 (추천 동작 조건시)	- 53	3 –
	1 2 - 4. A C 특성	- 54	1 –
	12-4-1. 기준 클록	- 54	1 –
	12-4-2. 리셋 Cycle	- 54	4 –
	12-4-3. Parallel I/F read access		
	12-4-4. Parallel I/F write access		
	12-4-5. Serial I/F access		
1	3. 외형 치수	58	-
	1 3 - 1 . PCD4611A외형치수도	5 8	} –

1 3 - 2. PCD4621A 외형치수도 59
1 3 - 3. PCD4641A 외형치수도 60 -
1 4 . 취급상의 주의 사항 61 -
1 4 - 1. 하드 설계상의 주의 61 -
14-1-1. 기본 사항
14-1-2. 프린트 기판 설계
14-1-3. 미 사용 단자 처리
14-1-4. 5V tolerant에 대하여
14-1-5. INT 신호 단자에 대하여
14-1-6. 범용 입력 port (P1 ~ 94)를 범용입력으로 사용하는 경우
1 4 - 2. 소프트 설계상의 주의 61 -
1 4 - 3. 기계계의 주의 61 -
14-3-1. End limit 검출 신호에 의한 정지로 감속 정지를 선택한 경우
1 4 - 4. 운송·보관상의 주의 61 -
1 4 - 5. 실제 장치상의 주의 62 -
1 4 - 6. 기타 주의 63 -
부록 64 -
부록A. Seiral I/F access 예
- Register 쓰기
- Command 읽기
- Status 읽기
- Register 읽기
- Port 상태의 읽기
- Main status의 읽기
부록B 내부 monitor (parallel I/F 때)
그림 일람
표 일람
CU

1. 개요 • 특징

1-1. 개요

PCD46x1A는 2상 스테핑 모터 가동용 시퀀스 기능 포함의 펄스 컨트롤LS I입니다. 본LS I와 스테핑 모터 드라이브용 IC에 따라、스테핑 모터 제어 시스템이 구축됩니다. CPU에서 데이터 그리고 Command를 입력하는 것으로, 속도제어, 위치제어등이 실행됩니다. 1-2. 특징

- 3. 3 V 단일전원 (입출력단자는 5 V Tolerant)
- 최고출력주파수
 - 4.91[Mpps] (기준클록: 9.8304MHz、속도배율: 300배일 때)
 - 2.46[Mpps] (기준클록: 4.9152MHz、속도배율: 300배일 때)
- CPUI/F는 Parallel (8bit)와 Serial (동기식 4선 serial)의 2mode를 준비
- 2상 스테핑 모터용 여자(励磁)시퀀스 출력 기능
 - Unipolar/Bipolar
 - 2-2상 려자/1-2상 려자
- 려자 시퀀스 출력용의 4단자를 범용 입출력 단자로써도 사용가능
- 펄스열 신호 출력기능 (CW/CCW펄스、펄스와 방향 신호)
- 직선 / S자 가감속 제어
- 외부 시작/정지 제어
- 연속 동작/원점 복귀 동작/위치 결정 동작/타이머 동작
- 공전 펄스 출력
- 현재 위치 카운트 (24bit)
- 슬로다운 포인트 자동 설정 기능
- ORG, +EL, -EL, STP신호에 따른 정지방법의 선택 (즉시정지/감속정지)
- · 1 축용(PCD4611A)/2 축용(PCD4621A)/4 축용(PCD4641A)의 3종류 준비

2. 사양

표 2-1 PCD46x1A의 주 사양

항목	규격				
전원	3.0~3.6 V				
 기준 클록	표준 4 . 9 1 5 2 M H z (Max. 1 0 M H z)				
	Parallel I/F: 8bit				
	Serial I/F: 동기 식 4선 serial				
CPU I/F	Serial clock : 기준 clock 주파수의 2배까지 (다만 상한				
	15[MHz]				
	PCD4611A: 1축				
제어 축수	PCD4621A: 2축				
	PCD4641A: 4축				
위치 결정 펄스수 설정 범위	0~16,777,215펄스(24비트)				
속도 설정 스탭수	1~8,191스탭 (13비트)				
	1~300배 (기준 클록:4.9152MHz일 때)				
	1 배일 때 1~ 8,191 pps				
	2배일 때 2~ 16,382 pps				
	5배일 때 5~ 40,955 pps				
 추천 속도 배율 설정 범위	10배일 때 10~ 81,910 pps				
	20배일 때 20~ 163,820 pps				
	50배일 때 50~ 409,550 pps				
	100배일 때 100~ 819,100 pps				
	200배일 때 200~1,638,200 pps				
 속도 설정 레지스터수	300배일 때 300~2,457,300 pps				
	F L 、 F H 속 도 용 의 2 종 류 / 축				
글도나는 포인트 설정 함법 슬로다운 포인트 설정 방법	0~16,777,215 (24비트/축)				
글도나는 도신도 설명 명립 가감속 방식	수동설정 또는 자동설정 직선 가감속/S자 가감속				
	1~65,535 (16비트/축)				
가감속 레이트 설정 범위 현재 위치 카운터	2 4 비트 UP / DOWN카운터 1 회로 / 축				
현재 위치 가운다	각 축에 매번 하기의 5신호를 입력				
	즉 축에 배한 아기의 5선호를 합력 ORG (원점)				
기계계 센서 입력	+EL, -EL (End limit)				
	+SD, -SD (slow down)				
	• 연속 동작				
	•위치 결정 동작				
대표적인 동작예	•원점 복귀 동작				
	•타이머 동작				
	・직선 가 감속/S자 가감속				
	·즉시정지/감속정지				
	· 속도변경				
 대표적인 기능예	• 외부시작/외부정지기능				
네ㅛㄱᆫ 기ㅇ베 	• 공전 펄스 출력 기능				
	・2상 스테핑 모터용 여자(励磁)시퀀스 출력				
	·범용 입출력 포트 4개/축(시퀀스출력과 겸용)				
	・공용 포트 6개 (Serial I/F 때만 사용 가능)				
사용 주의 온도	-40 ~ +85°C				
보존 온도	-65 ~ +150℃				
패키지	PCD4611A: 48pin QFP (금형부치수: 7.0× 7.0 mm)				

	PCD4621A: 64pin QFP (금형부치수 : 10.0×10.0 mm) PCD4641A:100pin QFP (금형부치수 : 14.0×14.0 mm)
칩구성	C-MOS

3. 단자

3-1. 단자 배치도 3-1-1. PCD4611A 단자배치도

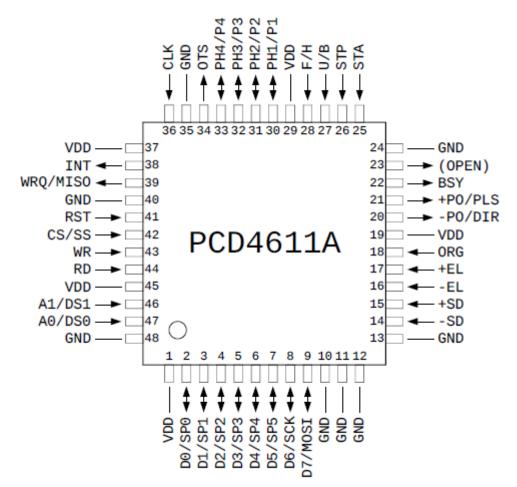


그림 3-1 PCD4611A 단자 배치도 (TOP VIEW)

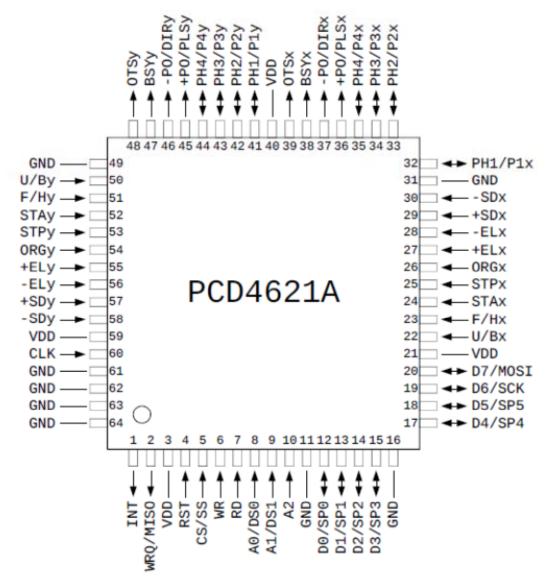


그림 3-2 PCD4621A 단자 배치도 (TOP VIEW)

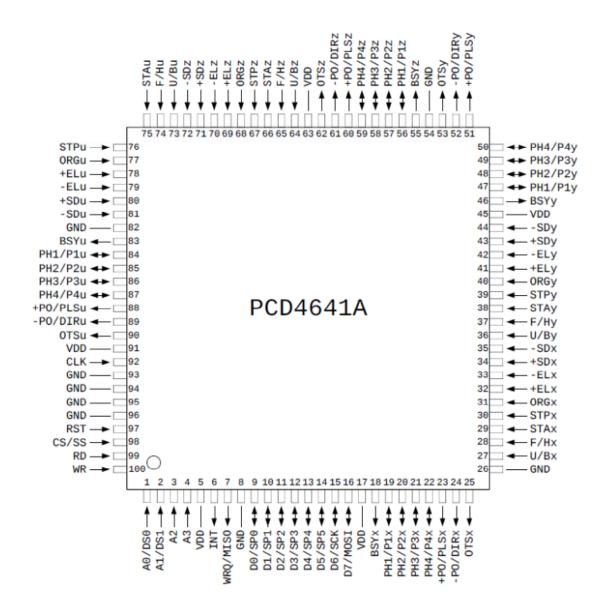


그림 3-3 PCD4641A 단자 배치도 (TOP VIEW)

3-2.. 단자 기능설명

표 3-1 PCD46x1A 단자 기능 일람 표

丑 3-1			F CD40X I	A DA	710	일람 표		
PCD4611A	단자 번호 PCD4621A	PCD4641A	단자명	I/O	논리	내용	5V Tole rant	
36	60	92	CLK	I	-	기준 Clock신호 표준에서는 4.9152[MHz]의 수정 발진기 (3.3[V]전원)로부터의 Clock을 입력	0	
41	4	97	RST	1%	부	Reset신호 기준 clock 3주기분의 L 레벨신호 입력에 따라 reset. 상세는 「11-1 reset」참조	0	
42	5	98	CS/SS	1	꾸	CPU I/F 신호 Parallel I/F 때 :Chip Select신호(CS) L 레벨의 경우,RD단자와 WR 단자가 유효 Serial I/F 때: slave select 신호 (SS) 상세는 「5 CPU I/F」참조	0	
43 44	6 7	100 99	WR RD	I	IJΓ	CPU I/F 신호 reset때의 입력 상태에서 CPU I/F를 설정. 상세는 「5-1-1-2 CPU I/F의 선택」참조 Parallel I/F 때: WR: write 신호 RD: read 신호 Serial I/F때: 미사용 (L 레벨 고정) 상세는 「5 CPU I/F」참조	Ο	
47 46	8 9 10	1 2 3 4	A0/DS0 A1/DS1 A2 A3	ı	정	CPU I/F신호 Parallel I/F 때: 아이들 bus(A0~A3) Serial I/F 때: device select 번호 (DS0,DS1 만 사용) 상세는 「5 CPU I/F」참조	0	
2 3 4 5 6 7 8 9	12 13 14 15 17 18 19 20	9 10 11 12 13 14 15	D0/SP0 D1/SP1 D2/SP2 D3/SP3 D4/SP4 D5/SP5 D6/SCK D7/M0SI	1/0	정	CPU I/F 신호 Parallel I/F 때: D0~D7: 쌍방향 data bus Serial I/F 때: SP0~SP5: 공동 PORT SCK: Serial clock M0SI: Serial data 입력 상세는 「5 CPU I/F」참조 SP0~SP5의 상세는「11-10-1 SP0~SP5 단자」참조	0	
38	1	6	INT	0%*	부	CPU I/F신호 인터럽트 request 신호 출력 상세는 「5 CPU I/F」 「11-8 interrupt request 신호 출력」참조	0	
39	2	7	WRQ/MIS	0	부/ 정	CPU I/F신호 Parallel I/F때 : weight request 신호(WRQ) Serial I/F 때: Serial data 출력 신호 (MISO) 상세는 「5 CPU I/F」참조	0	
27	22 50	27 36 64 73	U/Bx ※1 U/By U/Bz U/Bu	1%	_	여자(励磁)방식 설정 (L:유니폴라/H:바이폴라) 상세는 「11-6 려자 시퀜스 출력」참조 범용 입력으로 사용 가능 상세는 「11-9-2 U/B,F/H단자 참조	0	
28	23 51	28 37 65	F/H ※ 1 F/Hy F/Hz	1%	-	여자(励磁)시퀀스 설정 (L:2-2 상/H1-2 상) 상세는 「11-6 려자 시퀜스 출력」 참조	0	

		74	F/Hu	I	I	범용 입력 으로 사용 가	l
		/4				임상 1대 으로 사용 가 상세는 「11-9-2 U/B,F/H단자」참조	
25	24 52	29 38 66 75	STAx **1 STAy STAz STAu	1%	부	외부 시작 제어 신호 상세는 「11-3 외부 start 제어」참조	0
26	25 53	30 39 67 76	STPx **1 STPy STPz SPTu	1%	부	외부 정지 제어 신호 상세는 「11-4 외부 stop 제어」참조	0
18	26 54	31 40 68 77	ORGx **1 ORGy ORGz ORGu	1%	부	원점 신호 상세는 「11-7-3 원점 신호」참조	0
17	27 55	32 41 69 78	+ELx ※ 1 +ELy +ELz +ELy	1%	부	(+)방향 end limit 검출 신호 상세는 「11-7-1 end limit 검출신호」참 조	0
16	28 56	33 42 70 79	−ELx ※ 1 +Ely −ELx +ELu	۱%	부	(-)방향 end limit 검출 신호 상세는 「11-7-1 end limit 검출신호」참 조	0
15	29 57	34 43 71 80	+SDx ¾1 +SDy +SDz +SDu	1%	부	(+)방향 slow down point 검출 신호 상세는 「11-7-2 slow down point 검출 신호」참조	0
14	30 58	35 44 72 81	-SDx ¾1 -SDy -SDz -SDu	1%	부	(-)방향 slow down point 검출 신호 상세는 「11-7-2 slow down point 검출 신호」참조	0
30	32 41	19 47 56 84	PH1/P1x **1 PH1/P1y PH1/P1z PH1/P1u	I/O %	정	1상 여자(励磁)출력/범용 입출력1 상세는 「11-6 려자 시퀜스 출력」 「11-9-3 P1~P4」참조	0
31	33 42	20 48 57 85	PH2/P2x **1 PH2/P2y PH2/P2z PH2/P2u	I/O %	정	2상 여자(励磁)출력/범용 입출력2 상세는 「11-6 려자 시퀜스 출력」 「11-9-3 P1~P4」참조	0
32	34 43	21 49 58 86	PH3/P3x ** 1 PH3/P3y PH3/P3z PH3/P3u	I/O %	정	3상 여자(励磁)출력/범용 입출력3 상세는 「11-6 려자 시퀜스 출력」 「11-9-3 P1~P4」참조	0
33	35 44	22 50 59 87	PH4/P4x ** 1 PH4/P4y PH4/P4z PH4/P4u	I/O %	정	4상 여자(励磁)출력/범용 입출력4 상세는 「11-6 려자 시퀜스 출력」 「11-9-3 P1~P4」참조	0
21	36 45	23 51 60 88	+PO/PLSx **1 +PO/PLSy +PO/PLSz +PO/PLSu	0	-	(+)방향 펄스 / 공통 펄스 신호 출력 논리 변경 가능.초기 상태는 부논리 논리는 「11-5 출력 pulse mode」참조	0
20	37 46	24 52 61 89	PO/DIRx ** 1 -PO/DIRy -PO/DIRz -PO/DIRu	0	_	(-)방향 펄스 / 공통 펄스 신호 출력 논리 변경 가능.초기 상태는 부논리 논리는 「11-5 출력 pulse mode」참조	0
22	38 47	18 46 55 83	BSYx ** 1 BSYy BSYz BSYu	0	뫄	동작 중 신호 동작 중의 상태 시: L 레벨 출력 동작 상태의 check, 정지 시의 motor driver 전류 저감 제어 등에 사용	0

34	39 48	25 53 62 90	OTSx ** 1 OTSy OTSz OTSu	0	뿌	범용 출력 신호 상세는 「11-9-1 OTS 단자」참조	0
1,19, 29,37, 45	3,21, 40,59	5,17,45,63, 91	VDD	전원	ı	전원입력 +3.3V (3.0~3.6V)입력	
10,11, 12,13, 24,35, 40,48	11,16, 31,49, 61,62, 63,64	8,26,54,82, 93,94,95,96	GND	전원	전원 - 전원GND		
23	-	_	(Open)	0		출하검사용출력단자(필히 무접속 ※2)	X

주의 %:Pull up 저항 내장 단자

*: OPEN drain 단자

※ 1: PCD4611A는 단자 명 끝의 축 명칭 (x)는 없습니다.

※ 2: PCD4611A의 (Open)단자는 출하 검사 용 단자 입니다. 반드시 무 접속(Open)상태로 해주세요

4. 블럭도

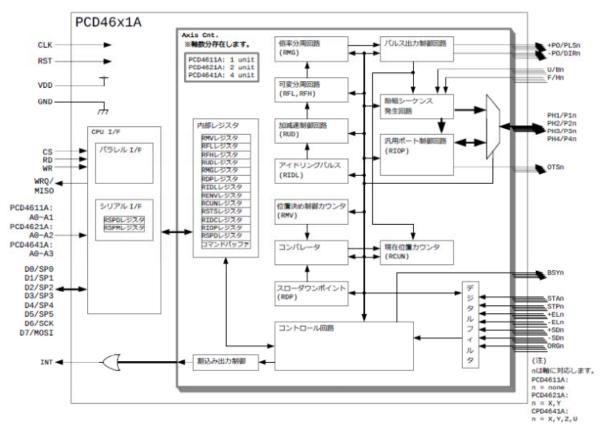


図 4-1 PCD46x1A ブロック図

5. CPU I/F

5-1. CPU 접속 방법

5-1-1 개요

CPU I/F는 Parallel I/F (8bit)와 Serial I/F (동기식 4선 Serial)의 2종류네에 하나를 선택하여 사용 합니다.

CPU I/F 용 단자는 2 종류의 I/F가 공용 입니다.

5-1-1-1 CPU I/F 신호

CPU I/F신호 일람을 표 5-1에 표시 합니다.

표 5-1 CPU I/F 신호 일람

단자명	Parallel I/F		Serial I/F	
	신호 명	내용	신호 명	내용
CS/SS	CS	CHIP SELECT	SS	Slave select
WR	WR	Write 신호	_	사용하지 않음 ※4
RD	RD	Read 신호	_	사용하지 않음 ※4
WRQ/MIS0	WRQ	WAIT 요구	MIS0	Serial data 출력
INT	INT	Interrupt 요구 ※3	INT	Interrupt 요구 ※3
A0/SD0	A0	Address bus bit 0	DS0	Device select 번호bit0
A1/DS1	A1	Address bus bit 1	DS1	Device select 번호bit1
A2 % 1	A2	Address bus bit 2	_	사용하지 않음
A3 * 2	A3	Address bus bit 3	_	사용하지 않음
D0/SP0	D0	Data bus bit 0	SP0	공용 포트 0
D1/SP1	D1	Data bus bit 1	SP1	공용 포트 1
D2/SP2	D2	Data bus bit 2	SP2	공용 포트 2
D3/SP3	D3	Data bus bit 3	SP3	공용 포트 3
D4/SP4	D4	Data bus bit 4	SP4	공용 포트 4
D5/SP5	D5	Data bus bit 5	SP5	공용 포트 5
D6/SP6	D6	Data bus bit 6	SCK	Serial clock
D7/M0SI	D7	Data bus bit 7	MOSI	Seiral data 입력

※1: PCD4621A,PCD4641A에 존재

※2: PCD4641A 만 존재

※3: Parallel/Serial에 따른 차이는 없습니다.

※4: CPU I/F 확정 후는 사용하지 않습니다만 CPU I/F확정을 위하여 L 레벨고정으로 사용 바랍니다.

5-1-1-2. CPU U/F의 선택

Reset중의 WR.RD신호 값을 기준 CLOCK의 시작에서 취득, CPU I/F에서 설정 합니다.

Reset중의 신호 값과 CPU I/F의 관련을 표 5-2에 표시 합니다.

CPU I/F	Reset 중의 신호 값
Parallel I/F	(WR = L & RD = L)이외
Serial I/F	(WR = L & RD = L)

5-1-2. Parallel I/F

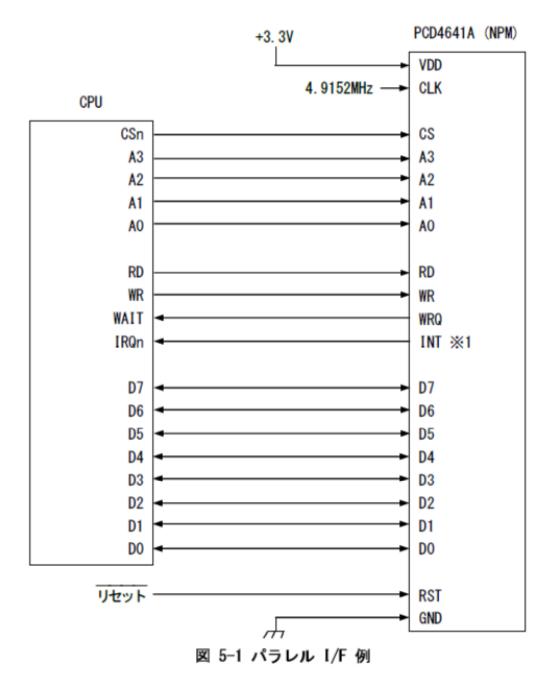

PCD46x1A의 각 Parallel I/F 신호에 대한 접속 방법을 표 5-3에 표시 합니다.

표 5-3 Parallel I/F 신호에 대한 CPU와의 접속 방법

신호 명	방향	접속 방버
CS		CPU의 chip select 단자와 접속
WR	1	CPU의 write단자와 접속
RD	1	CPU의 read 단자와 접속

WRQ	0	CPU의 weight 단자와 접속
INT	0	CPU의 interrupt 요구 단자와 접속
A0 ~ A3	1	CPU의 address bus 와 접속
D0 ~ D7	1/0	CPU의 data bus와 접속

CPU와 PCD4641A의 Parallel I/F에서의 접속 예를 그림 5-2에 표시 합니다. Access 방법은 「5-2 parallel I/F access 방법」을 참조 바랍니다.

※ 1 : 외부에서 PULL UP 저항 $(5k\Omega \sim 10k\Omega)$ 이 필요 합니다. [주의] CPU soft에서 하기의 설정으로 해 주세요.

- 외부 pulse 폭 설정은 [8bit bit 공간]을 선택
- 외부 weight는 허가
- IRQ검출 설정은 [L 레벨, 시작 edge]를 선택

PCD46x1A의 각 Serial I/F신호에 대한 접속 방법을 표 5-4에 표시 합니다.

표 5-4 Serial I/F 신호에 대한 CPU와의 접속 방법

신호 명	방향	접속 방버
SS	1	CPU의 slave select 단자와 접속
SCK	1	CPU의 serial clock 출력단자와 접속
MOSI	1	CPU의 serial data 출력단자와 접속
MIS0	0	CPU의 serial data 입력단자와 접속
INT	0	CPU의 interrupt 요구 단자와 접속
DS0 ~ DS1	1	Device select 번호를 설정
SP0 ~ SP5	1/0	공용 포트로서 사용 가능

동기 식 4선 serial I/F 입니다.

SPI의 mode0 (또는 3)과 같은 access하는 것을 할 수 있습니다.

한 개의 SS신호에서 본 LSI를 4개 까지 접속 할 수 있습니다.

동일의 SS신호상에 있는 LSI의 device select 번호는 중보 하지 않도록 배정 바랍니다.

SCK의 clock 주파수는 기준 clock의 2배까지 (다만 상한 15[MHz]) 입니다.

Serial I/F 부는 serial clock 동작하고 그외의 회로는 기준 clock 동작 합니다.

CPU와 PCD46x1A의 Serial I/F에서의 접속 예는 그림 5-2에 표시 합니다.

Access 방법은 「5-3 serial I/F access 방법」 을 참조 바랍니다.

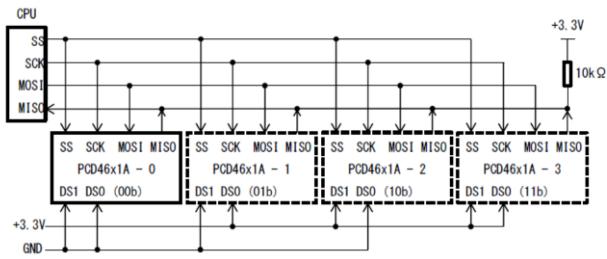


그림 5-2 SERIAL IF 예

[주의] Pull up 저항은 floating 때에 CPU나 PCD46x1A의 파손을 방지하는 목적으로 접속하고 있습니다.

5-2 Parallel I/F access 방법 5-2-1 Address map

5-2 Parallel I/F access 방법 5-2-1 Address map

PCD46x1A의 Parallel I/F 에서는, 1축 당 4번지 분의 Area를 점유 합니다.(1byte/번지) CPU로부터 직접 access 하는 1축분의 address map의 내역을 표 5-5에 표시 합니다.

PCD4611A는 1축 이기에 4번지 분의 공간을 갖고 축 선택용의 addrss단자 (A3,A2)를 갖지 않습니다.

PCD4621A는 2축 이기에 8번지 분의 공간을 갖고 축 선택용의 addrss단자 (A2)에서 X.Y축을 선택 합니다.

PCD4641A는 4축 이기에 16번지 분의 공간을 갖고 축 선택용의 addrss단자 (A3,A2)에서 X.Y.Z.U축을 선택 합니다.

표 5-5 Parallel I/F의 address map 내역

명칭	개략				
COMBF	Command buffer (8bit)				
	대상 축에 대한 command driver 영역.				
	Command의 상세는 「6 command」를 참조				
MSTS	Main status (8bit)				
	대상 축의 main status 영역				
	Main status의 상세는 「7-1 main status」를 참조				
RegWBF	Register 쓰기 용 buffer (24bit)				
	Register의 write data 격납 영역				
	bit7 ~ 0으로의 쓰기 때에 register 선택 command에서 선택한				
	register 에 bit23 ~ 0의 data를 쓴다				
RegRBF	Register 쓰기 용 buffer (24bit)				
	Register의 read data 격납 영역				
	사전에 register 선택 command에서 선택한 register 값이 copy 된다				

표 5-6 Parallel I/F 의 1축 분의 ADDRESS MAP

A1~A0	Write [[H	Read (III
00b	COMBF에 작성하기	MSTS 불러내기
01b	R e g W B F (7~0)에 작성하기	RegRBF(7~0)에서 불러내기
10b	RegWBF(15~8)에 작성하기	RegRBF(15 [~] 8)에서 불러내기
11b	RegWBF(23~16)에 작성하기	RegRBF(23~16)에서 불러내기

표 5-7 Parallel I/F의 축 선택 ADDRESS MAP

A3 ~ A2	축	조건
00b	Χ	PCD4621A (A3 단자 없음). PCD4641A
01b	Υ	PCD4621A (A3 단자 없음). PCD4641A
10b	Z	PCD4641A 만
11b	U	PCD4641A 만

5-2-2 Weight 제어

COMBF 쓰기 후는 command 쓰기 내분 처리가 RegWBF bit $7\sim0$ 쓰기 후는 register 쓰기 내부처리가 발생 합니다.

내부 처리 중에 다음의 access가 올 경우는 내부 처리가 끝나기 까지의 사이, 본 LSI의 WRQ신호부터 L 레벨을 출력 하는 것에서 weight 제어를 행합니다.

다만 register access command 쓰기에 의한 command 쓰기 내부 처리의 경우는 내부 처리 중에 온 다음의 access가 read 경우만 weight 제어를 행하기 때문에 write경우는 불 필요 합니다.

사용하는 CPU가 WRQ신호에 대응하지 않는 경우는 내부 처리 용의 시간으로서 기준 CLOCK 3주기 분 이상의 대기 시간을 갖도록 SOFT처리를 행하여 주세요.

5-2-3 Command 쓰기 수순

Command 쓰기 수순을 그림 5-3에 표시 합니다.

① COMBF에 Command를 작성합니다. 그 때, 레지스터 select command를 쓰기한 경우만 선택한 register 값이 RegRBF로 복사됩니다.,

command 쓰기 내부 처리 시간 ② WRQ출력을 사용하지 않을 때에는 내부 처리 중은 다음의을 갖음 (기준 CLOCK 3주기 access를 행하지 않도록 처리 바랍니다.

※ WRQ신호 사용 때는 불요

그림 5-3 Parallel I/F command 쓰기 수순

5-2-4 Main status 읽기 수순 Main status 읽기 수순을 그림 5-4에 표시 합니다.

MSTS를 읽기 합니다.

그림 5-4 Parallel I/F main status 읽기 수순 5-2-5. Register 쓰기 순서 Register 쓰기 수순을 그림 5-5에 표시 합니다.

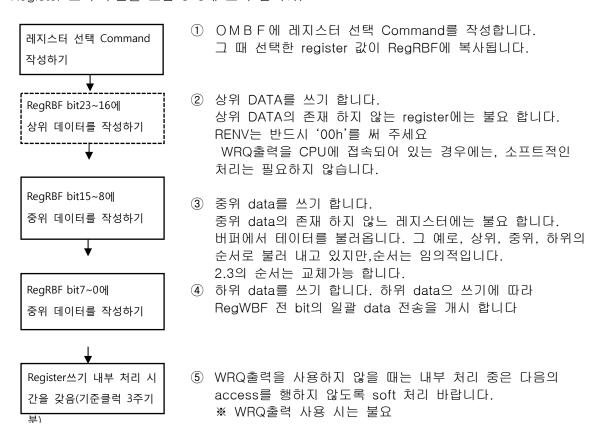


그림 5-5 Parallel I/F register 쓰기 수순

5-2-6 Register 읽기 수순 Register 읽기 수순을 그림 5-6에 표시 합니다.

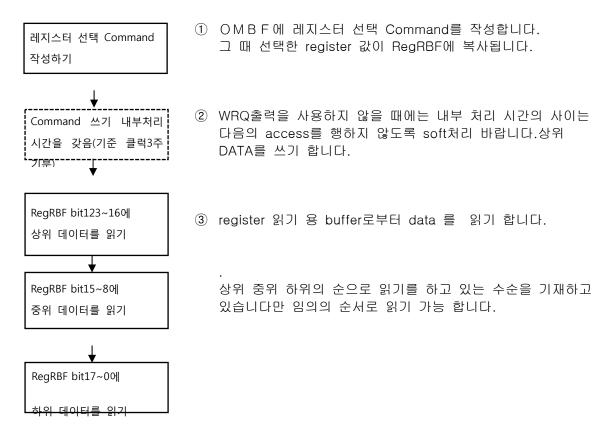


그림 5-6 Parallel I/F register 읽기 수순

5-2-7 준비

Parallel I/F 때는 reset 해제 후에 반드시 아래 수순의 설정을 행하여 주세요.

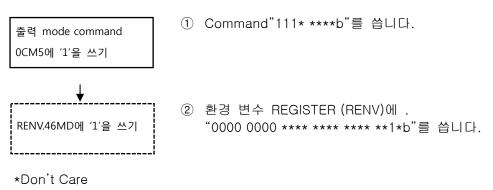


그림 5-7 Parallel I/F reset 해제 후 준비 수순

구 제품 (PCD4500,PCD45x1)과의 호환성을 갖기 위한 mode가 있어 Parallel I/F 때는 reset 해제 후는 그 상태가 됩니다. 상기의 수순은 이 mode를 빼기 위하여 행합니다. (Serial I/F 때는 호환성을 갖는 MODE는 없고 RESET 해제 후의 이 수순은 불요 합니다.)

[주의] 이후의 access에서 출력 mode command,RENV를 변경 할 때도 출력 mode command OCM5 = '1'.RENV.46MD = '1'이 되도록 해 주세요.

5-3 Serial I/F access 방법

Serial I/F는 8bit 단위로 access를 행합니다.

기본적으로는 그림 5-8과 같이 축 선택 code + command + data의 구성이 됩니다.

그림 5-8 Serial I/F access format 개략

Access type는 4종류이고 축 선택 code의 type선택 에리어에서 선택 합니다. Command, data의 Byte수는 access type와 선택한 축의 수에 따라 변합니다.

5-3-1 축 선택 code

Serial I/F에의한 access는 축 선택 code의 송신부터 시작 합니다. 그림 5-9에 선택 code의 구성을 표시 합니다.

5-3-1-1 축 선택 area

Access 대상이 되는 축을 선택 합니다.

대응하는 bit를 '1'로 하는 것으로 축을 선택 합니다.

모두 '0'의 경우는 X축만을 선택 합니다.

또 존재 하지 않는 축의 access에 대하여는 다음과 같습니다.

(예 : PCD4611A에서 Y축을 지정)

WRITE: 무시

READ: '0'을 읽게 됩니다.

5-3-1-2 Type선택 area

Access type를 선택 합니다. 표 5-8에 표시한 4종류의 access type가 있습니다.

표 5-8 Serial I/F의 access type

Type 선택		Access type	Data 길이
В	Α		
0	0	범용 write 조작	(0~24bit)*축수
		Command, register의 쓰기	
0	1	범용 read 조작	(24bit)* 축수
		Command, register, status의 읽기	
1	0	범용 포트 상태 읽기	(8bit) * 축수
1	1	Main status 읽기	(8bit) * 축수

5-3-1-3 Device 선택 area

Access 대상이 되는 LSI를 선택합니다. 동일 SS신호에서 제어 하는 LSI가운데 DS0,DS1 단자에 설정한 Device select번호와 일치하는 LSI가 access 대상이 됩니다.

일치하지 않는 LSI에 access한 경우는 아래와 같이 됩니다.

MOSI: 무시, MISO: H level (pull up 때문에)

5-3-2. 범용 write 조작

Command, register로의 쓰기를 행합니다.

Type선택은 '00b' 입니다.

범용 write조작은 아래 두 가지가 있습니다.

- Command 쓰기
- Register 쓰기

5-3-2-1 Command 쓰기

Start mode command,제어 mode command, register select command, 출력 mode command 를 쓰는 방법 입니다.

각 command의 상세는 「6 command」를 참조 바랍니다.

2Byte의 access가 됩니다.

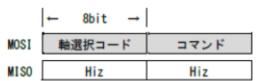


그림 5-10 serial I/F 범용 write 조작 (command 쓰기) 통신 format

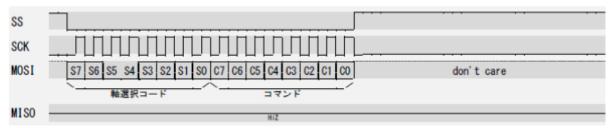


그림 5-11 serial I/F 범용 write 조작 (command 만) timing

Command의 쓰기 실행 timing은 SS신호의 시작 입니다.

복수 축 선택하고 있는 경우는 동일의 COMMAND를 복수 축 동시에 씁니다.

5-3-2-2 Register 쓰기

Command, register select command를 쓰기, 그 후에 data (하위, 중위, 상위의 순)를 송신하는 것으로 register로의 쓰기를 행하는 것을 할 수 있습니다.

Register select command의 상세는 $\lceil 6-3 \rceil$ register select command \rfloor 를 참조 바랍니다. 복수 축 선택한 경우는 X축,Y축,Z축,U축의 순으로 선택한 축 수분의 DATA를 송신하여 주세요. 예를 들면 Y.U축을 선택한 경우는 Y축 DATA (하위,중위,상위),U축 DATA (하위,주위,상위)의 순으로 DATA를 송신 바랍니다.

2 + (3 * 축수 분) Byte의 access가 됩니다.

MOSI	軸選択コード	コマンド	下位データ [7:0]	中位データ [15:8]	上位データ [23:16]
MISO	Hiz	Hiz	Hiz	Hiz	Hiz

그림 5-12 Serial I/F 범용 write 조작 (register 쓰기) 통신 format

Register의 쓰기 실행 timing은 SS신호의 시작 입니다.

[주의] DATA 수는 축 선택이 단축인가, 복수 축인가에 따라 변화 합니다.

단축의 경우는 중위 DATA, 상위 DATA가 존재 하지 않는 register에 대하여는 생략 가능합니다,

복수 축의 경우는 선택한 축분 * 24bit의 data를 송신 해 주세요. 24bit 마다 축의 write data의 환경을 판별 합니다. 존재 하지 않는 bit에 관해서는 무시 합니다만 장래의 확장을 위하여 '0'을 송신 하도록 해 주세요.

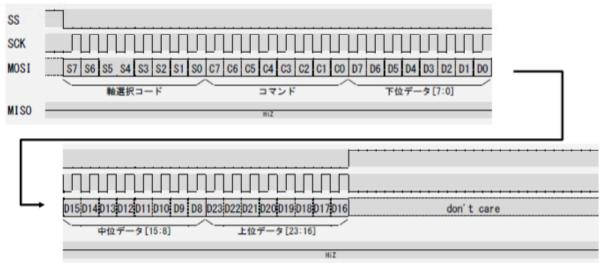


그림 5-13 serial I/F 범용 write 조작 (register 쓰기) timing

복 수축 선택했을 때의 access예를 부록 A에 기재 하였습니다.

LSI 단위에서 한 개 존재 하는 RSPO, RSPM register에 대한 쓰기는 다른 register의 쓰기와 약간 다릅니다.

축 선택 area의 송신 data는 무시 됩니다.(임의의 data를 송신해 주세요) 3Byte의 access가 됩니다.

MOSI	軸選択コード	コマンド	データ[7:0]
MISO	Hiz	Hiz	Hiz

그림 5-14 Serial I/F 범용 write 조작 (RSPO, RSPM register 쓰기) 통신 format

Access는 3Byte로 쓰기가 완료 합니다.

이후의 SS가 시작 까지의 access는 모두 무시 됩니다.

Register의 쓰기 timing은 access의 3Byte째의 송신 완료 직후로 SS를 High로 시작하든 그렇지 않든 관계 없이 처리 됩니다.

5-3-3 범용 READ 조작

Command, status, register의 읽기를 행합니다.

Type선택은 '01b' 입니다

축 선택 code에 계속된 command는 범용 write조작의 것과는 다릅니다.

표 5-9에 표시 합니다.

복수 축 선택한 경우는 X축,Y축,Z축,U축의 순으로 선택한 축수 분의 read data를 출력합니다.

표5-9 serial I/F 범용 read command

Read command		동작
상위 4bit	하위 4bit	
0000b	0000b	Command 읽기
		Start mode command, 제어 mode command, register select
		command의 읽기
0001b	0000b	status읽기
		main status, 확장 status의 읽기
0010b	_	미 정의 command
~		사용 하지 말아 주세요
0111b		
1000b	SSSSb	Register 읽기
		"SSSS"의 부분에서 register 선택 code(표8-3)을 선택 하고,
		register 읽기를 행합니다. RCM3 ~ 0에상당 합니다.
1001b	_	미 정의 COMMAND
~		사용하지 말아 주세요.
1111b		

5-3-3-1 Command 읽기

Start mode command, 제어 mode command, register select command 순으로 read data 를 출력 합니다.

Reda command '00h'입니다

2 + (3* 축수 분) Byte의 access 됩니다.

MOSI	軸選択コード	リードコマンド	don't care	don't care	don't care	
MISO	Hiz	Hiz	スタートモード コマンド	制御モード コマンド	レジスタセレクト コマンド	

図 5-15 シリアル [/F 汎用リード操作(コマンド読出し)通信フォーマット

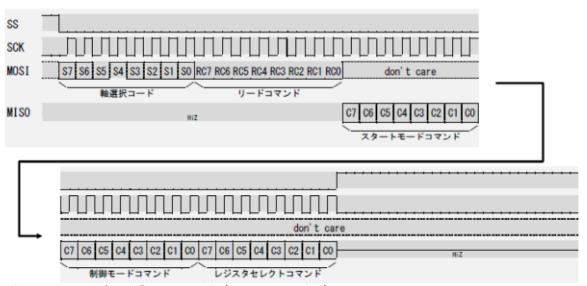


그림 5-16 serial I/F 범용 read 조작 (command 읽기) timing

축 선택 area에서 복수의 축을 선택 한 경우, 선택 한 모두의 축의 start mode command, 제어 mode command, register select command의 read data를 출력 합니다.

Read command의 bit 6을 쓴 직후에 전축의 start mode command, 제어 mode command, register select command가 동시에 latch 되어 이것을 읽기 됩니다.

출력 mode command를 읽을 경우, register 읽기에서 RMG register의 시작 data로서 읽혀지기 때문에 그쪽을 사용하여 주세요.

복수 축 선택했을 때의 access예를 「부록 A」에 기재하고 있습니다.

5-3-3-2 Status 읽기

Main status (MSTS), 확장 status 하위 data (RSTS bit 7~0), 확장 status 중위 data (RSTS bit 15~8)의 순으로 read data를 출력 합니다.

Read command는 '10h'입니다.

2 + (3 * 축수 분) Byte의 access가 됩니다.

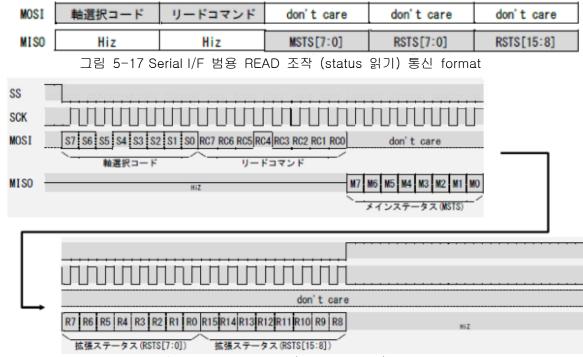


그림 5-18 Serial I/F 범용 READ 조작 (STATUS 읽기) TIMING

축 선택 area에서 복수의 축을 선택한 경우, 선택한 모든 축의 status 를 출력 합니다. 읽기는 read command의 bit 6을 쓴 직후에 전축의 status 가 동시에 latch 되고 이것이 읽게 됩니다.

복수 축 선택했을 때의 access예를 「부록 A」에 기재하고 있습니다.

5-3-3-3 Register 읽기

Register의 하위 data (bit $7 \sim 0$),register data 의 중위 data (bit $15 \sim 8$), register data의 상위 data (bit $23 \sim 16$)의 순으로 read data를 출력 합니다.

Read command는 '1000_SSSSb' 입니다. 'SSSS'에서 register 선택 code (표8-3)을 선택합니다.

2 + (3 * 축수 분) Byte의 access가 됩니다.

MOSI	軸選択コード	リードコマンド	don't care	don't care	don't care
MISO	Hiz	Hiz	データ[7:0]	データ[15:8]	データ[23:16]

그림 5-19 serial I/F 범용 read 조작 (register 읽기) 통신 format

그림 5-20 Serial I/F 범용 read 조작 (register 읽기) Timing

축 선택 area에서 복수의 축을 선택한 경우, 선택한 모든 축의 동일의 register선택 code의 register data를 출력 합니다.

read command의 bit 2을 쓴 직후에 전축의 status 가 동시에 latch 되고 이것이 출력 합니다. 중위, 상위 data가 존재 하지 않는 register의 경우라도 24bit분의 읽기가 필요 합니다.

복수 축 선택했을 때의 access예를 「부록 A」에 기재하고 있습니다.

LSI 단위에서 한 개 존재 하는 RSPO,RSPM register에 대한 read 조작은 다른 register의 read 조작과 약간 다릅니다.

축 선택 area의 송신 data는 무시 됩니다. (임의의 data 를 송신 해 주세요) 수신 data는 8bit 만 입니다.

Read command는 '1000_SSSSb' 입니다. 'SSSS'에서 register선택 code (표8-3)을 선택 합니다.

MOSI	軸選択コード	リードコマンド	don't care	
MISO	Hiz	Hiz	データ[7:0]	

그림 5-2 Serial I/F 범용 read 조작 (RSPO, RSPM register 읽기) 통신 format

5-3-4 범용 포트 상태 읽기

각 축 단위의 범용 포트의 상태를 읽습니다.

RENV.IOPM과 RIOP (bit 5 ~ 0)의 register값을 확인할 수 있습니다.

Type선택은 '10b' 입니다. Command는 불요 입니다.

복수 축 선택한 경우는 X축,Y축,Z축,U축의 순으로 선택한 축수 분의 data를 출력합니다.

1 + (1 * 축수 분) Byte의 access가 됩니다.

MOSI	軸選択コード	don't care
MISO	Hiz	データ[7:0]

그림 5-22 Serial I/F 범용 포트 상태 읽기 조작 통신 FORMAT

표 5-10 Serial I/F 범용 포트 상태 읽기 조작의 read data

Bit	Bit 명	내용
0	P0	RIOP.CP1의 값
1	P1	RIOP.CP2의 값
2	P2	RIOP.CP3의 값
3	P3	RIOP.CP4의 값
4	P4	RIOP.MUB의 값
5	P5	RIOP.MFH의 값
6	미 정의	항상 '0'
7	EN	RENV.IOPM의 값

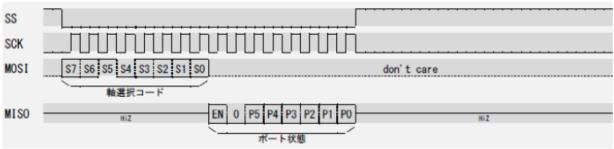


그림 5-23 Serial I/F 범용 포트 상태 읽기 TIMING

축 선택 area에서 복수의 축을 선택한 경우, 선택한 모든 축의 범용 포트 상태를 읽습니다. 축 선택 code의 bit 4를 쓴 직후에 전축의 범용 포트상태가 동시에 latch 되고 이것을 읽게 됩니다.

복수 축 선택했을 때의 access예를 「부록 A」에 기재하고 있습니다.

5-3-5 Main status읽기

각 축 단위의 main status를 읽기 합니다.

Type선택은 '11b' 입니다.

Command는 불요 합니다.

복 수축 선택했을 경우는 X축,Y축,Z축,U축의 순으로 선택한 축수 분의 data를 출력합니다.

1 + (1 * 축수 분) Byte의 access가 됩니다.

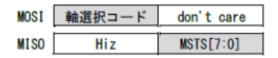


그림 5-24 serial I/F main status 읽기 조작 통신 format

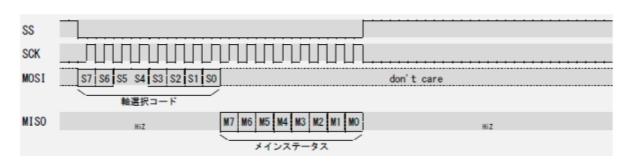


그림 5-25 serial I/F main status 읽기 조작 timing

축 선택 area에서 복수의 축을 선택한 경우, 선택한 모든 축의 main status를 읽습니다. 읽기는 축 선택 code의 bit 4를 쓴 직후에 전축의 main status 가 동시에 latch 되고 이것을 읽게됩니다.

복수 축 선택했을 때의 access예를 「부록 A」에 기재하고 있습니다.

6. Command

본LSI를 제어하는 Command는, 8비트의 Command버퍼(CPMBF)에 작성됩니다. 작성 된 Command는, 상위 2비트의 값에 의해, 표 6-1에 표시된 4종류의 Command로 분류되어 넣어둡니다.

표 6-1 command의 종류

비트7,6	Command종류				
00b	시작 모드 Command				
	FL정속시작, FH정속시작, 고속(가감속포함)시작, 즉시정지, 감속정지등				
	시작/정지에 관한 Command입니다.				
01b	제어 모드 Command				
	연속동작, 원점복귀동작, 위치결정동작등의 동작에 관한 Command입니다.				
10b	레지스터 선택 Command				
	내부 레지스터에 작성하기/불러내기를 할 때,레지스터를 선택하는 Command입니다.				
11b	출력 모드 Command				
	출력 펄스 논리, 시퀀스 출력의 마스크, 센서입력감도, 모니터모드의 선택등				
	입출력신호의 설정에 관련된 Command입니다.				

- 주1. 시작 모드 Command의 기입에 의해 동작이 시작합니다. 제어 모드 Command 작성하기, 동작용 레지스터에의 설정, 출력 모드 Command 작성하기를 하여 마지막에 시작 모드 Command를 작성해 주세요.
- 주2. 제어 모드 Command와 출력 모드 Command는, 전회와 동일 설정치로 좋은 경우에는, 한 번 더 기입은 불필요합니다.
- 주3. RMV 레지스터 이외의 레지스터는, 전회와 동일 설정치로 좋은 경우에는, 한 번 더기입은 불필요합니다
- 주4. 같은 이동량의 위치 결정 동작을 반복하는 경우에도, RMV 레지스터에는 이동량을 매회 작성해 주세요

6-1. 시작 모드 Command

시작/정지에 관한 Command입니다.

표 6-2 start mode command bit 명

7	6	5	4	3	2	1	0
0	0	SCM5	SCM4	SCM3	SCM2	SCM1	SCM0

동작 command 를 표 6-3에 표시 합니다.

Command를 쓰기 했을 때의 동작 상황 (정지 중/동작 중)에 따라 동작이 틀립니다.

표 6-3 start mode command 동작 command 설명

SCM4~0	정지 중	동작 중
10h	FL 정속 START	순시에 FL 속도로 변경
11h	FH 정속 START	순시에 FH 속도로 변경
14h	FL 정속 START ※1	감속해서 FL 속도로 변경
15h	FH 고속 START 보류	가속해서 FH 속도로 변경
12h	FL 정속 START 보류	(설정 금지)
13h	FH 정속 START 보류	(설정 금지)
17h	FH 고속 START 보류	(설정 금지)
08h	_	즉 정지
1Dh	_	감속 정지

※1: FL 정속 start 에 따라서는 "10h" command를 사용해 주세요.

[주의] 즉 정지 command 쓰기에서 정지 (BSY=H level)까지 최장 시간은 FL pulse주기분 입니다.

SCM5는 정지 때의 interrupt 제어를 행하는 bit 입니다.

정지 때의 interrupt제어의 상세는 「11-8 interrrupt request신호 출력」를 참조 바랍니다.

표 6-4 start mode command 정지 때 INT 출력 제어 설명

SCM5	내용
0	정지 때에 INT 신호를 출력하지 않음 (본 INT 요인 clear)
1	정지시 INT 신 <u>호를</u> 출력한다

DA70133-1/4

6-2. 제어 모드 Command

동작 모드에 관한 Command입니다.

표 6-5 제어 mode command bit 명

7	6	5	4	3	2	1	0
0	1	CCM5	CCM4	CCM3	CCM2	CCM1	CCM0

비트	비트 비	내용
0	CCM0	ORG신호제어 0: ORG입력을 무시합니다. 1:ORG입력이 Low Level이 되면 즉시정지 또는 감속정지합니다. 즉지정지 / 감속정지의 선택은, RENV.ORDS에서 합니다.
1	CCM1	+SD,-SD신호제어 0 : + S D , - S D 입력을 무시합니다. 1 : 동작방햐으이 신호가 Low Level이 되면 감속해서 FL속도로 됩니다.
2	CCM2	위치결정동작제어 0 : RMV설정값과는 무관계입니다.(연속 동장 mode) 1 : RMV설정값분의 펄스를 출력해서 자동 정지합니다.(위치결정mode)
3	CCM3	동작방향선택 () : 동작방향을(+)방향으로 합니다. (1 : 동작방향을(-)방향으로 합니다.
4	CCM4	OST출력신호제어

		0 : OTS단자를 L Level로 합니다. 1 : OTS단자를 H Level로 합니다.
5	CCM5	가감속특성제어
		0 : 가감속특성을 직전가감속으로 합니다.
		1 : 가감속특성을 S자가감속으로 합니다.

6-3. 레지스터 선택 Command

주로 내부 register 쓰기, 읽기를 행할 때에 레지스터를 선택하는 Command입니다.

표 6-7 register select command bit 명

7	6	5	4	3	2	1	0
1	0	RCM5	RCM4	RCM3	RCM2	RCM1	RCM0

표 6-8 register select command 설명

비트	비트명	내용
3~0	RCM3~0	
		레지스터 선택 코드 RCM3~0의 4비트에서 쓰기/읽기 대상의 register를 선택. Register상세는,「8. register 」를 참조바랍니다.
4	RCM4	슬로 다운 포인트 인터럽트 출력 제어
		0 : 슬로 다운 포인터 통과에서 I N T 신호를 출력하지 않는다.
		(본 INT요인 clear)
		1 : 슬로 다운 포인트에서 통과에서 INT신호를 출력합니다.
5	RCM5	외부 시작 인터럽트 출력 제어
		0 : S T A 입력에의해 시작해도 INT신호를 출력하지 않는다.
		(본 INT요인 clear)
		1 : S T A 입력에 의한 시작일 때에 INT신호를 출력합니다.

6-4. 출력 모드 Command

입출력 신호 설정에 관한 Command입니다.

표 6-9 출력 mode command bit 명

7	6	5	4	3	2	1	0
1	0	OCM5	OCM4	OCM3	OCM2	OCM1	OCM0

표 6-10 출력 mode command 설명

비트	비트명	내용			
0	OCM0	+PO/PLS, -PO/DIR 출력 논리 설정			
		0 : + PO, - PO, PLS는 부논리펄스、DIR은(+)방향일 때 High Level			
		1 : + P O, - P O, PLS는 정논리펄스、DIR은(+)방향일 대 Low Level			
1	OCM1	펄스 출력 마스크 제어			
		0 : 동작중에 펄스를 출력 (통상출력)			
		1 : 펄스 출력을 마스크해서, 시퀀스 출력 변화도 정지			
		(현재 위치 카운터는 동작)			
2	OCM2	여자(励磁)시퀀스 출력 마스크 제어			
		0: 시퀀스 신호를 출력 (통상동작)			
		1 : 시퀀스 출력단자Φ1~Φ4을 전부 Low Level로 고정한다. (마스크)			
		RENV.IOPM = 1 일 때는, 시퀀스 출력 단자는 범용 포트 단자가 되어,			
		본설정에 의해 단자 상태를 변화시키지 않는다. (RSTS.SPH1~SPH4는 변화합니다.)			
3	OCM3	가감속 동작 도중 정지 제어			
	OCIVIO	기급적 공적 모음 공자 제에 O : 가감속 동작 가능 (통상의 가감속)			
		1 : 가감속 도중 정지 (가속 또는 감속중에 도중 속도로 고정)			
		가속중、감속중에 1로 하면, 그때의 속도를 유지하고, 1로 하면 계속			
		합니다.			
4	OCM4	ORG , +EL , -EL , STP신호 필터 삽입제어			
		0 : 필터 무			
		1 : 필터 유 (기준 클럭 3주기분 정도의 너비의 펄스 입력에서 응답)			
5	OCM5	모니터 모드 선택			
		0 : 표준 monitor mode ※1			
		1 : 확장 monitor mode (필경)			
		Serial I/F 때는 '1'에 고정 됩니다. ('0'을 써도 무효 입니다.)			

※1: 구 제품 (PCD4500, PCD45x1)과의 호환성을 갖기 위한 mode 입니다. 반드시 '1'을 쓰기 바랍니다

7. STATUS

7-1 Main status

Main status (MSTS) monitor 입니다.

Parallel I/F때는 「5-2-4 main status 읽기 수순」에 따라 확인 할 수 있습니다.

Seiral I/F 때는 「5-3-3-2 status 읽기/5-3-5 main status 읽기」에 따라 확인 할 수 있습니다.

표 7-1 mail status bit 명

7	6	5	4	3	2	1	0	
FDWN	FUP	SDP	PLSZ	BUSY	ISTA	ISDP	ISTP	

표 7-2 main status 설명

비트	비트명	내용						
UI	ш_0							
0	ISTP	정지시 인터럽트 요구 상태						
		(O:ON상태,1:OFF상태)						
1	ISDP	슬로다운 포인트 인터럽트 요구 상태						
		(0:0N상태,1:0FF상태)						
2	ISTA	외부 시작 인터럽트 요구 상태						
		(0:0N상태,1:0FF상태)						
3	BUSY	동작 상태 monitor						
		0 : 정지상태, 1 : 동작중						
4	PLSZ	잔 pulse 0 monitor						
		1 : RMV = 0						
5	SDP	Slow down point 통과 monitor						
		1:RMV≦RDP						
6	FUP	가속 상태 monitor						
		1 : 가속중						
7	FDWN	감송 상태 monitor						
		1 : 감속중						

7-2 확장 status

확장 status (RSTS) monitor 입니다.

Parallel I/F 때는 「5-2-6 register 읽기수순 (RSTS)」에 따라 확인 할 수 있습니다.

Serial I/F 때는 「5-3-3-2 status읽기/5-3-2-2register 읽기 (RSTS)」에따라 확인할 수 있습니다.

표 7-3 확장 status bit 명

							8									
SINT	SOTS	SPP0	SMP0	SPH4	SPH3	SPH2	SPH1	SPHZ	SPSD	SMSD	SSTA	SSTP	SORG	SPEL	SMEL	

표 7-4 확장 status 설명

비트	비트명	내용
0	SMEL	-EL 단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
1	SPEL	+EL 단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
2	SORG	ORG 단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
3	SSTP	STP 단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)

4	SSTA	STA단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
5	SMSD	-SD단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
6	SPSD	+SD단자 상태 monitor
		0: OFF상태 (H level)
		1: ON 상태 (L level)
7	SPHZ	려자 원점 monitor (「11−6 려자 시퀜스 출력」참조)
		1: 려자 원점 위치
8	SPH1	PH1: 신호 monitor
		0: L level
		1: H level
9	SPH2	PH2: 신호 monitor
		0: L level
		1: H level
10	SPH3	PH3: 신호 monitor
		0: L level
		1: H level
11	SPH4	PH4: 신호 monitor
		0: L level
		1: H level
12	SMP0	-PO/DIR 신호 monitor
		0: L level
		1: H level
13	SPP0	+PO/PLS 신호 monitor
		0: L level
		1: H level
14	SPTS	OTS신호 monitor
		0: L level
		1: H level
15	SINT	Interrupt 상태 monitor (축 단위)
		0: OFF상태
		1: ON 상태

7-3 제품 정보 CODE

제품 정보 code(RIDC) monitor 입니다.

Parallel I/F때는 「5-2-6 register 읽기 수순 (RIDC)」에따라 확인 할 수 있습니다. Serial I/F때는 「5-3-3-2 register 읽기 (RIDC)」에따라 확인 할 수 있습니다.

표 7-5 제품 정보 code monitor bit 명
7 6 5 4 3 2 1 0
IDC3 IDC2 IDC1 IDC0 VRC 0 0 S46M

표 7-6 제품 code monitor 설명

비트	비트명	내용
0	S46M	RENV.46MD 설정 값의 monitor
2~1	미정의	(항상 '00b')
3	VRC	VERSION 판별 code PCD46x1A에서는 반드시 '1'을 읽을 수 있습니다. 0:PCD46x1(구 VERSION) 1:PCD46x1A
7~4	IDC3~0	제품 정보 code 1001b: 1축 (PCD4611A)

	1010b: 2축 (PCD4621A)
	1100b: 4축 (PCD4641A)

8. 레지스터

8-1. 레지스터 일람

PCD46x1A에는 축 단위로 하기의 레지스터가 존재합니다 (RSP0,RSPM은 LSI 단위에서 하나만 존재)

표 8-1 REGISTER 일람

레지스터 명	레지스터내용	비트 길이	설정범위	Access가부
RMV	이동량설정/이동량확인	24	0~16,777,215	R/W
RFL	FL속도설정	13	1~8,191	R/W
RFH	FH속도설정	13	1~8,191	R/W
RUD	가감속비율설정	16	1~65,535	R/W
RMG	속도배율설정	10	2~1,023	R/W
RDP	슬로다운포인트설정	24	0~16,777,215 또는 -8,388,608~ +8,388,607	R/W
RIDL	아이들링 펄스 설정	3	0~7	R/W
RENV	환경설정	16	0000h~FFFFh	R/W
RCUN	현재위치카운터	24	0~16,777,215 또는 -8,388,608~ +8,388,607	R/W
RSTS	확장스테이터스	16	0000h~FFFFh	R
RIDC	제품코드모니터	8	00h~FFh	R
RIOP	범용포트출력제어/monit or	6	00h~3Fh	R/W
RSPD	현재속도모니터	13	0~8,191	R
RSP0	공용 포트 출력 제어/moniotor	6	0h ~ 3Fh	R/W *
RSPM	공용 포트 속성 설정	6	0h ~ 3Fh	R/W *

R/W: 불러내기, 작성하기 둘다 가능 *:Serial I/F때 만, LSI단위에서 하나 존재

W : 작성하기만 가능 R : 불러내기만 가능 - : ACCESS 가부

8-2. Register 상세 code

레지스터 선택 Command.RCM3~0으로 선택하는 register를 선택 합니다.

표 8-2 register 선택 code 《작성할 때》

		RegWBF	
RCM3~0	상위 DATA	중위 data	하위 data
	(bit 23~16)	(bit 15~8)	(bit 7~0)
0000b	RMV(23~16)	RMV(15~8)	RMV(7~0)
0001b	(무효)	RFL(15~8)	RFL(7~0)
0010b	(무효)	RFH(15~8)	RFH(7~0)
0011b	(무효)	RUD(15~8)	RUD(7~0)
0100b	(무효)	RMG(15~8)	RMG(7~0)
0101b	RDP(23~16)	RDP(15~8)	RDP(7~0)
0110b	(무효)	(무효)	RIDL(7~0)
0111b	00h 주1	RENV(15~8)	RENV(7~0)
1000b	RCUN(23~16)	RCUN(15~8)	RCUN(7~0)
1001b	(무효)	(무효)	(무효)
1010b	(무효)	(무효)	RIOP(7~0)
1011b	(무효)	(무효)	RSP0(bit7~0)주2
1100b	(무효)	(무효)	RSPM(bit7~0)주2
1101b		_	
1110b		ACCESS 금지	
1111b			

(무효)의 곳은 장래의 확장을 위해, 'OOh'를 쓸수 있도록 하여 주세요.

주1. RENV(bit 23~16)는 출하검사용설정을 위해, 필히 'Ooh'를 작성해 주세요.

주2. Serial I/F 때만 access가능한 register 입니다.

표 8-3 Register 선택 code 《불러 낼 때》

RCM3~0		RegRBF			
	상위 DATA	중위 data	하위 data		
	(bit 23~16)	(bit 15~8)	(bit 7~0)		
0000b	RMV(23~16)	RMV(15~8)	RMV(7~0)		
0001b	시작모드Command	RFL(15~8)	RFL(7~0)		
0010b	제어모드command	RFH(15~8)	RFH(7~0)		
0011b	레지스터선택Command	RUD(15~8)	RUD(7~0)		
0100b	출력모드Command	RMG(15~8)	RMG(7~0)		
0101b	RDP(23~16)	RDP(15~8)	RDP(7~0)		
0110b	RSPD(15~8)	RSPD(7~0)	RIDL(7~0)		
0111b	RIDC(7~0)	RENV(15~8)	RENV(7~0)		
1000b	RCUN(23~16)	RCUN(15~8)	RCUN(7~0)		
1001b	OOh	RSTS(15~8)	RSTS(7~0)		
1010b	OOh	OOh	RIOP(7~0)		
1011b	OOh	OOh	RSPO(7~0) 주1		
1100b	OOh	OOh	RSPM(7~0) 주1		
1101b	OOh	OOh	OOh		
1110b	OOh	OOh	OOh		
1111b	OOh	OOh	OOh		

주1. Serial I/F 때만 access 가능한 register 입니다. (Parallel I/F 때는 '00h')

8-3. Register 상세

8-3-1. RMV

위치 결정 동작 모드일때에, 출력 펄스수를 성정하는 24비트의 레지스터입니다. 설정 범위는, 0 (000000h) ~16,777,215(FFFFFFh)입니다.

표 8-4 RMV register 선택 code, bit 폭

Writ	е Ш	Read [H					
RCM 3 ~0	RegWBF	RCM ~ 0	RegRBF				
0000b	bit 23 ~ 0	0000b	bit 23 ~ 0				

표 8-5 RMV register 선택 code, bit 폭

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

본 레지스터는, 위치 결정 제어용의 다운 카운터로써 동작합니다.

연속동작, 원점복귀동작, 위치결정동작등의 동작 모드일 때에도, 1펄스 출력할 때마다 1카운터씩 차감됩니다.

다만, [위치결정 제어용 다운카운터 동작제어]를 [카운터정지]로

설정할 경우 카운터 하지 않습니다. (RENV.DCSP = 1)

카운터값(잔펄스 수)는, 동작중에도 정지중에도 불러 낼 수 있습니다.

위치 결정 동작 모드에서는, 이 레지스터(카운터)에 출력 펄스수를 설정한 후 동작시킵니다

시작 후, 카운터의 값이 차감되면서 설정 펄스수를 출력완료해서 카운터값이 "0"이 되어 자동 정지합니다.

위치 결정 동작 모드에서, 본 레지스터에 "Oh"을 설정시켜 시작 Command를 작성 할 경우, 펄스 출력하지 않고, MSTS.BUSY와 BSY 출력신호도 정지 상태가 됩니다.

또한, 정지시 INT출력을 유효로 설정할 때에는 INT신호는 출력되지 않습니다.

위치 결정 동작중에 정지 Command나 외부신호의 입력에 의해 동작을 중단시켜도, 다운카운터의 값은 잔펄스수로 되어 있기 때문에, 다시 시작 Command 입력하는 것만으로도 잔 펄스수만 출력됩니다.

설정 펄스 수를 출력 완료하면 다운 카운터값은 "0"이 되므로, 전회와 같은 펄스 수의 동작일 경우에도, 다시 RMV레지스터에 설정할 필요가 있습니다.

8-3-2. RFL

FL속도 스텝값을 설정하는 13비트의 레지스터입니다. 설정범위는, 1 (00001h) ~ 8.191(1FFFh)입니다.

표 8-6 BFL register 선택 code bit 폭

		0 0.0 , 2.1 ,	
	Write III		Read 때
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0001b	bit 15 ~ 0	0001b	bit 15 ~ 0

표 8-7 RFL register bit 단위 access 종별

2	2	2	2	1	1	1	1	1	1	1	12	11	10	9	8	7	6	5	4	3	2	1	0
_	2	•	-	_	_		_	_		_													
_	-	-	Ι	ı	ı	ı	ı	0 *	0 *	0 *	R/ W												

고속(가감속포함)시작일 때는, FL속도에서 시작한 후, FH속도까지 가속합니다. 고속 동작중에 감속 정지 Command를 작성하면, 감속이 시작되어 FL속도로 되면 정지합니다.

RFL설정값과 FL속도의 관계는, RMG설정값에서 요구되는 [속도배율]에 따라 변화합니다.

FL속도[pps] = (RFL설정값) X (속도배율)

· 주의. FL속도를 "0"에 설정하면, 정지시에 부논리의 출력 펄스가 Low Level상태에서 . 로크되어, 정지상태로 되지 않는 경우가 있으므로, 필히 1이상의 값을 설정해 주세요.

8-3-3. RFH

FH속도 스텝값을 설정하는 13비트의 레지스터입니다. 설정 범위는 1(00001h) ~ 8,191(1FFFh)입니다.

표 8-8 RHF register 선택 code, bit 폭

Write	때	Read	d CH
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0010b	bit 15 ~ 0	0010b	bit 15 ~ 0

표 8-9 RHF register bit 단위 access 종별

2	2	2	2	1	1	1	1	1	1	1	12	11	10	9	8	7	6	5	4	3	2	1	0
3	2	1	0	9																			
_	_							0	0	0	R/												
								*	*	*	W	W	W	W	W	W	W	W	W	W	W	W	W

고속(가감속포함)시작일 때는, FL속도에서 시작한 후 FH속도까지 가속합니다. RFH설정값과 FH속도와의 관계는, RMG설정값에서 요구되는 [속도배율]에 따라 변화합니다.

FL속도[pps] = (RFH설정값) X (속도배율)

· 주의. FH속도를 "0"에 설정하면, 정지시에 부논리의 출력 펄스가 Low Level상태에서 · 로크되어, 정지상태로 되지 않는 경우가 있으므로, 필히 1이상의 값을 설정해 주세요.

8-3-4. RUD

가속, 감속시의 특성을 설정하는 16비트의 레지스터입니다. 설정범위는 1 (0001h) ~ 65,535(FFFFh)입니다.

표 8-10 RUD register 선택 code, bit 폭

	Write III		Read 때
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0011b	bit 15 ~ 0	0011b	bit 15 ~ 0

표 8-11 RUD register bit 단위 access 종별

	2	2	2	2	1	1	1	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	3	2	1	0	9	8	7	6																
Ī	1	-							R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
									/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
										W			W					W		W				W

RUD설정값과 가감속시간과의 관계는, 하기의 관계입니다.

1.직선가감속일 때

가감속시간[s] = (RFH설정값 - RFL설정값)×(RUD설정값)/(기준클록주파수[Hz])

2.S자가감속일 때

가감속시간[s] = (RFH설정값-RFL설정값)×(RUD설정값) × 2 / (기준클록주파수[Hz])

8-3-5. RMG

속도배율에 관한 값을 설정하는 10비트의 레지스터입니다. 설정범위는 2 (0002h) ~ 1,023(3FFh)입니다.

표 8-12 RMG register 선택 code, bit 폭

Wr	ite CH	Rea	ad [[H
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0100b	bit 15 ~ 0	0100b	bit 15 ~ 0

표 8-13 RMG register bit 단위 access 종별

2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
3	2	1	0	9	8	7	6	5	4	3	2	1	0										
_	-							0	0	0	0	0	0	R/ W									

속도설정레지스터(RFL,RFH)에는, 1~8,191의 속도스텝값을 설정할수 있지만,

속도스텝값과 출력펄스속도와의 관계를 이 레지스터에서 설정합니다.

출력펄스속도[pps] = (속도설정레지스터값) × (속도배율)

속도배율[배] = (기준클록주파수[Hz])/ (RMG설정값×8192)

표 8-14 RMG 설정 값과 배율 (대표 예)

RMG설정값	속도배율
600 (258h)	1 HH
300 (12Ch)	2배
120 (078H)	5 HH

20 84 9	을 (대표 에
RMG설정값	속도배율
60 (03Ch)	10배
30 (01Eh)	20배
12 (00Ch)	50배

RMG설정값	속도배율
6 (006h)	100배
3 (003h)	200배
2 (002h)	300#

8-2-6. RDP

슬로다운 포인트를 설정하는 24비트의 레지스터입니다. 설정범위는, 슬로다운 포인트 설정방식에 따라 변합니다.

표 8-15 RDP register 선택 code, bit 폭

Wri	te 때	Read 때						
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF					
0101b	bit 23 ~ 0	0101b	bit 23 ~ 0					

				Ī	∃ 8-	-16	RDF	reg	iste	r bit	단위	ac	ces	s 종	별								
2	2	2	2													7	6	5	4	3	2	1	0
3	2	1	0	9	8	7	6	5	4	3	2	1	0										
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
\/\/	\//	\٨/	\//	\٨/	\٨/	\٨/	\٨/	\//	\٨/	\٨/	۱۸/	\٨/	\٨/	\٨/	\٨/	\//	\٨/	\٨/	\٨/	\٨/	\٨/	\٨/	\//

위치 결정 동작 모드에서의 고속 시작일 때, 가속개시타이밍 설정합니다.

위치결정 동작이외의 동작모드(제어모드Command.CCM2=0)일 때에는, 본 레지스터 설정값은 무효입니다.

슬로다운 포인트설정에는, 수동설정방식과 자동설정방식이 있으며, RENV.ASDP에서 선택합니다. 본 레지스터에의 설정값의 정의는 슬로다운 포인트 설정방식에 따라 달라집니다.

① 수동설정방식일 때 (RENV.ASDP = 0) 감속개시 타이밍을 잔펄스수에서 설정합니다. 설정범위는 0 (000000h) ~16,777,215(FFFFFFh)입니다. RPLS(잔펄스수)≦(RDP설정값)이 되면, 감속을 시작합니다.

② 자동설정방식일 때 (RENV.ASDP = 1)

자동설정값에 대한 보정량을 부호 붙여진 수치에서 설정합니다.

정수에서는, 빠르게 감속을 시작하여 감속완료후에 FL속도에서 동작하고 정지하는 것처럼 됩니다.

부수에서는, 늦게 감속을 시작하므로 FL속도까지 감속하지 못하고 정지합니다.

자동설정값은 시작할 때에 0에서 가속중에 출력한 펄스를 카운터하며 커집니다.

자동설정값을 유지할 경우에는 0 (000000h)을 설정합니다.

보정량의 설정범위는 -8,388,608(800000h)~+8,388,607(7FFFFFh)입니다.

RPLS(잔펄스수) ≦ (자동설정값) + (RDP설정값)이 되면, 감속을 시작합니다.

자동설정값은, 시작할 때에 0에서 가속중에 출력한 펄스를 카운터하며 커집니다. 또 감속중에 출력한 펄스를 카운터하여 작아집니다.

수동설정방식/자동설정방식 어느방식이라도, 시작할 때에 이미 상기의 감속개시 조건이 성립해 있을 때에는 가속하지 않고 FL속도인 채로 동작합니다.

8-3-7. RIDL

아이들 link pulse 수를 설정 하는 3bit의 register 입니다. 설정 범위는 0(0h) ~ 7(7h) 입니다.

표 8-17 RIDL register 선택 code, bit 폭

Wr	ite CH	Re	ad [H
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0110b	bit 7 ~ 0	0110b	bit 7 ~ 0

*: Don't care

표 8-18 RIDL register bit 단위 access 종별

2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	/	6	5	4	3	2	1	0
3	2		-	-	-		-	-		-	_		-										
-	_	_	_	_	_	-	_	_	_	_	_	_	-	-	-	0	0	0	0	0	R/ W	R/ W	R/ W

고속 (가감 속부) START 때에 이 register에 설정 한 pulse수를 출력하고 나서, 가속을 개시 합니다. '0'의 때는 start와 동시에 가속을 개시 하기 때문에 최초의 pulse 주기는 FL속도의 주기보다도 짧아집니다.

아이들 link pulse출력의 상세에 대하여는 「11-2 아이들 link pulse 출력」을 참조 바랍니다.

8-3-8.RENV

환경 설정을 하는 24bit의 register 입니다. 실제로 사용하는 것은 16 bit (bit15~0)에서, 상위 Data (bit 23~16)은 출하 검사 용 설정 범위가 됩니다. 반드시 '00h'를 쓰기 바랍니다.

표 8-19 RENV register 선택 code, bit 폭

Writ	e CH	Rea	ad CH
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
0111b	bit 23 ~ 0	0110b	bit 15 ~ 0

표 8-20 RENV register bit 단위 access 종별

2	2	2	2	1	1	1	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
3	2	1	0	9	8	7	6																
W	W	W	W	W	W	W	W	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
								/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
								W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

표 8-21 RENV register bit 명

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IPM	IPM	IPM	IPM	I0P	MSK	PRE	PST	0RR	OR	ELD	SPD	ASD	DCS	46M	PM
4	3	2	1	М	М	V	Р	S	DS	S	S	Р	Ρ	D	D

표 8-22 RENV register 설명

		표 8-22 RENV register 설명
비트	비트명	내용
0	PMD	+PO/PLS, -PO/DIR단자에서 출력하는 펄스사양을 선택합니다. 0:2pulse mode (+P0,-P0) +PO단자에서(+)방향펄스, -PO(-)방향펄스를 출력 1:공통 pulse mode (PLS,DIR) PLS단자에서 펄스, DIR단자에서 방향신호를 출력(H=(+)방향, L=(-)방향)
1	46MD	호환 모드를 선택 0: PCD45 x 1 호환mode ※1 1: PCD46 x 1 mode(필수) 다만 Serial I/F 때는 '1'에 고정 됩니다. ('0'을 써도 무시 합니다.)
2	DCSP	위치결정동작용 다운카운터를 제어 0 : 펄스 출력때 마다 다운 카운트, 1 : 카운트 정지
3	ASDP	슬로 다운 포인트 설정방식을 선택 0 : 수동설정방식, 1 : 자동설정방식
4	SPDS	STP입력에 의한 정지방법을 선택 0 : 즉지정지 1 : 감속정지
5	ELDS	+ E L , - E L 입력에 의한 정지방법을 선택. 0 : 즉시정지 1 : 감속정지
6	ORDS	ORG입력에 의한 정지방법을 선택. 0 : 즉시정지 1 : 감속정지
7	ORRS	RCUN(현재위치카운터)의 자동리셋기능을 설정 0 : 자동 리셋OFF 1 : 원점복귀동작중의 ORG입력 L 레벨에서 리셋 ※2
8	PSTP	RCUN(현지위치카운터)의 카운트동작을 설정 0 : 펄스 출력때 마다 카운트(출력모드Command.OCM1 = 1 일 때도 카운트.) 1 : 카운트정지
9	PREV	RCUN(현재위치카운터)의 카운터방향을 설정 0 : (+)방향동작시에 카운트업, (-)방향동작시에 카운트다운 1 : (+)방향동작시에 카운트다운, (-)방향동작시에 카운트업

10	MSKM	려자 시퀜스 출력 마스크 때의 출력 설정 (출력 mode command OCM2=1의 때)
		0: PH1 = L. PH2 = L. PH3 = L. PH4 =-L
		1: PH1 = L. PH2 = L. PH3 = H. PH4 =H

비트	비트명	내용
11	IOPM	PH1/P1 ~ PH4/P4 단자의 기능선택 ※3
		0 : PH1 ~ PH4(려자 시퀀스출력)출력단자로써 사용
		1 : P 1 ~ P 4 (범용포트)입출력단자로써 사용
12	IPM1	P1범용입출력단자의 사양선택※4
		0 : 범용출력단자
		1 : 범용입력단자
13	IPM2	P2범용입출력단자의 사양선택※4
		0 : 범용출력단자
		1 : 범용입력단자
14	IPM3	P3범용입출력단자의 사양선택※4
		0 : 범용출력단자
		1 : 범용입력단자
15	IPM4	P4범용입출력단자의 사양선택※4
		0 : 범용출력단자
		1 : 범용입력단자

注意.

※1 구 제품 (PCD4500,PCD45x1)과의 호환 성을 갖고 있는 mode 입니다.

반드시 '1'을 써 주세요

※2 비 pulse 출력 중은 ORG신호 시작 때에서, pulse 출력 중은 ORG신호 L 레벨 에서 pulse 주기 완료 때

※3 RENV.IOPM = 0일 때는, RENV.IPM1~IPM4의 설정은 무효입니다.

※4 초기 상태에서는 PH1~PH4의 출력 단자가 됩니다.

범용입력단자로써 사용하는 경우에는, 「14-1-6 범용 입출력 포트 ($P1 \sim P4$)를 범용 입력으로 사용하는 경우」를 참조 바랍니다.

8-3-9. RCUN

현재위치 카운터로 24bit register 입니다.

설정범위는 0 (000000h) ~16,777,215(FFFFFh) 또는

-8,388,608(800000h)~ +8,388,607(7FFFFFh)에서 제어소프트의 수치관리에 따라 변합니다.

표 8-23 RCUN register 선택 code, bit 폭

Wri	te CH	Rea	ad CH
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
1000b	bit 23 ~ 0	1000b	bit 13 ~ 0

표 8-24 RCUN register bit 단위 access 종별

						_																	
2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
3	2	1	0	9	8	7	6	5	4	3	2	1	0										
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
W	w W	/ W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

000000h에서 다운 카운터로 FFFFFFh가 되며, FFFFFFh에서 업 카운터로 000000h가됩니다.

RENV.PSTP = 0일 때는 [+]방향 동작 때에 카운터 UP하여,[-]방향 동작 때에 카운터 DOWN 합니다만 RENV.PSTP = 1일 때는 카운터 방향 바뀝니다.

또 RENV.ORRS = 1로 해서 원점 복귀를 행마면 원점위치에서 본 카운터가 자동 RESET 됩니다. 상세는 「9-2 원점 복귀 MODE」를 참조 바랍니다.

8-3-10. RSTS

확장스테이터스의 monitor 입니다.

표 8-25 RSTS register 선택 code, bit 폭

Wri	te CH	Read	d CH
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
_	_	1001b	bit 15 ~ 0

표 8-26 RSTS register bit 단위 access 종별

23																								
_	-	-	-	-	-	-	-	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	l

표 8-27 RSTS register bit 명

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SINT SOTS SPPO SMPO SPH4 SPH3 SPH2 SPH1 SPHZ SPSD SMSD SSTA SSTP SORG SPEL SMEL

확장 status의 상세는 「7-2 확장 status 」를 참조 바랍니다.

비트	비트명	내용
0	SMEL	- E L 단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
1	SPEL	+EL 단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
2	SORG	ORG단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
3	SSTP	STP단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
4	SSTA	STA단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
5	SMSD	-SD단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
6	SPSD	 +SD단자상태모니터(0:OFF상태(High Level) 1:ON상태(Low Level))
7	SPHZ	여자(励磁)원점모니터 (「11-6. 여자(励磁)시퀀스 출력」참조) 0 : OFF상태 1 : ON상태 (여자(励磁)원점위치)
8	SPH1	Φ1신호모니터 (0 : Low level 1 : High level)
9	SPH2	Φ2신호모니터 (Ο: Low level 1: High level)
10	SPH3	Φ3신호모니터 (Ο: Low level 1: High level)
11	SPH4	Φ4신호모니터 (0 : Low level 1 : High level)
12	SPH0	-PO/DIR단자 모니터 (0 : Low Level 1 : High Level)
13	SPPO	+PO/PLS단자 모니터 (0 : Low Level 1 : High Level)
14	SOTS	OTS단자 모니터 (0 : Low Level 1 : High Level)
15	SINT	인터럽트 요구상태(축마다) (0 : OFF상태 1:ON상태)

8-2-11. RIDC

제품 정보 CODE에서, 8bit register 입니다.

표 8-28 RIDC register 선택 code, bit 폭

			•
	Write 때		Read 때
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
-	_	0111b	bit 23 ~ 16

표 8-29 RIDC register bit 단위 access 종별

																							0	
_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	R	R	R	R	R	0	0	R	

표 8-30 RIDC register bit 명

7	6	5	4	3	2	1	0
IDC3	IDC2	IDC1	IDC0	VRC	0	0	S46M

제품 정보 code monitor의 상세는 「7-3 제품 정보 code」를 참조 바랍니다.

8-3-12. RIOP

려자 시퀜스 출력 겸용의 범용 입출 포트 (PH1/P1 \sim PH4/P4)의 설정, monitor를 하는 6bit 의 register입니다.

표 8-31 RIOP register 선택 code, bit 폭

Wr	ite 때	Read 때						
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF					
1010b	Bit 7 ~ 0	1010b	bit 7 ~ 0					

표 8-32 RIOP register bit 단위 access 종류

		_									-	• •		•	-	•	•				_	•	0
_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	0	0	R	R	W/R	W/R	W/R	W/R

표 8-33 RIOP register bit 명

7	6	5	4	3	2	1	0
0	0	MFH	MUB	CP4	CP3	CP2	CP1

표 8-34 RIOP register 설명

비트	비트명	내용
0	CP1	P 1 단자제어(작성할 때), PH 1 / P 1 단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
1	CP2	P2단자제어(작성할 때), PH2 / P2단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
2	CP3	P3단자제어(작성할 때), PH3 / P3단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
3	CP4	P4단자제어(작성할 때), PH4 / P4단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
4	MUB	U / B 단자상태모니터 (작성할 때는 무효) 0 : Low Level 1 : High Level
5	MFH	F / H단자상태모니터 (작성할 때는 무효) 0 : Low Level 1 : High Level
7~6	미 정의	(항상 '00b')

본 register의 쓰기에서부터 범용 출력 포트 출력 레벨을 설정 합니다.

본 register의 읽기에서부터 범용 입력 포트의 상태를 모니터 합니다.

8-3-13 RSPD

읽기 전용의 현재 속도 모니터로 16bit의 register 입니다.

단위는 RFL. RFH register값과 같은 속도 step 값 입니다. 수치 범위는 0 (0000h) ~ 8,191 (FFFFh) 입니다.

표 8-35 RSPD register 선택 code, bit 폭

	Write (#		Read 때
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
_	_	0110b	bit 23~ 8

8-36 RSPD register bit 단위 access 종별

																. 8									
Ĺ	-	-	ı	ı	_	ı	ı	ı	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

정지 중의 RSPD 모니터 값은 0이 됩니다.

RSPD 모니터 값과 동작 속도와의 관계는 RMG설정 값으로부터 구해지는 「속도 배율」에 따라 변화 합니다.

동작 속도 [pps]=(RSPD 모니터 값) *(속도 배율)

8-3-14. RSPO

공용 포트 (SP0 ~ SP5)의 출력 설정, 모니터를 하는 6bit register 입니다.

Serial I/F 때만 사용 가능한 register 입니다.

LSI 단위에서 한 개 존재하는 register 입니다. 축 선택을 무시 합니다.

Parallel I/F 때는 write 무효, read 값 '00h'가 됩니다.

표 8-37 RSP0 register 선택 code, bit 폭

Wri	te CH	Rea	d CH
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF
1010b	Bit 7 ~0	1011b	bit 7~ 0

표 8-38 RSPO register bit 단위 access 종별

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
_	-	ı	ı	1	ı	ı	ı	-	ı	-	-	-	-	-	-	0	0	W/R	W/R	W/R	W/R	W/R	W/R

표 8-39 RSP0 register bit 명

7	6	5	4	3	2	1	0	
0	0	SP05	SP04	SP03	SP02	SP01	SP00	

표 8-40 RSPD register 설명

비트	비트명	내용
0	SP00	SP0단자제어(작성할 때)/SP0단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
1	SP01	SP1단자제어(작성할 때)/SP1단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
2	SP02	SP2단자제어(작성할 때)/SP2단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
3	SP03	SP3단자제어(작성할 때)/SP3단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
4	SP04	SP4단자제어(작성할 때)/SP4단자상태모니터 (불러낼 때) 0 : Low Level 1 : High Level
5	SP05	SP5단자제어(작성할 때)/SP5단자상태모니터 (불러낼 때) 0:Low Level 1:High Level
7~6	미 정의	(항상 '00b')

8-3-15 RSPM

공용 포트 (SP0 ~ SP5)의 입 출력 설정을 하는 6bit의 register 입니다.

Serial I/F 때 만 사용 가능한 register 입니다.

LSI 단위에서 한 개 존재 하는 register 입니다. 축 선택을 무시 합니다.

Parallel I/F 때는 write 무효, read 값 '00h'가 됩니다.

표 8-41 RSPM register 선택 code ,bit 폭

Wri	te CH	Read 때		
RCM 3 ~0	RegWBF	RCM3 ~ 0	RegRBF	
1100b	Bit 7 ~0	1100b	bit 7~ 0	

표 8-42 RSPM register bit 단위 access 종별

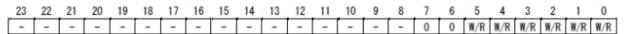


표 8-43 RSPM register bit 명

7	6	5	4	3	2	1	0	
0	0	SPM5	SPM4	SPM3	SPM2	SPM1	SPMO	ı

표 8-44 RSPM register 설명

비트	비트명	내용
0	SPM0	SPO 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
1	SPM1	SP1 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
2	SPM2	SP2 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
3	SPM3	SP3 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
4	SPM4	SP4 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
5	SPM5	SP5 범용 입출력 단자의 사양 선택 0 : 범용 출력 단자 1 : 범용 입력 단자
7~6	미 정의	(항상 '00b')

9. 동작모드

동작 mode에는 아래 4가지 mode가 있습니다.

- 연속 동작 mode
- 위치 결정 mode
- 원점 복귀 mode
- Timer mode

제어 mode command와 출력 mode command, RENV register의 설정에 따라 선택 합니다.

표 9-1 동작 mode 선택

출력모드Command	제어모드여	Command	RENV레지스터	동작모드
OCM1	CCM2	CCM0	PSTP	ゔヿ゙ヹニ
0	0	0	0	연속모드
0	0	1	0	원점복귀모드
0	1	1	0	원점복귀모드(최대이동량관리)
0	1	0	0	위치결정모드
1	1	0	1	타이머모드

9-1. 연속 동작 모드

시작Command의 작성하기에 의해 시작한 후, 정지Command를 작성할 때까지 계속 동작하는 모드입니다.

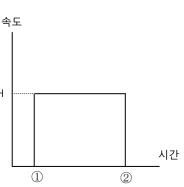
동작방향은, 제어모드Command.CCM3에서 설정합니다. (0:[+]방향, 1:[-]방향)

RMV 불러내기 값(위치결정제어용 다운카운터값)을 시작할 때의 값부터 다운 카운터합니다.

· · · · · · · · · · · · · · · · · · ·	
연속모드에서의 동작방향 <ccm3> 0:(+)방향 1:(-)방향</ccm3>	제어모드Command (WRITE) 7 0 0 1 n 0 - 0
필스출력제어 <0CM1> 0: 출력한다 1: 출력하지 않는다.	출력모드Command (WRITE) 7 0 1 1 1 n -
RCUN(현재위치카운터)의 카운터 동작설정 <renv.pstp> 0: 펄스 출력마다 카운터 (출력모드Command.OCM1=1일 때도 카운터) 1: 카운터 정지</renv.pstp>	RENV레지스터 (WRITE) 15 8 n

9-1-1. (+)방향 FL정속연속동작의 순서예

① 시작할 때 속도 COMBF ← 40 h (제어모드Command):[+]방향 COMBF ← E0h (출력모드Command):pulse출력유) COMBF ← 87h (RENV선택Command):RENV) RegWBF상위 data(bit23~16) ← 00 h RegWBF중위 data(bit15~8) ← 00 h RegWBF하위 data(bit7~0) ← 02 h COMBF ← 81h (Register select command: RFL 000100h) RegWBF상위 data(bit23~16) ← 00 h(생략가) RegWBF중위 data(bit15~8) ← 01h RegWBF하위 data(bit7~0) ← 00h COMBF ← 84h (Register select command: RMG 000258h) R e g W B F 상위 data(bit23~16) ← 0 0 h (생략가) 시간 RegWBF중위 data(bit15~8) ← 02h (2) (1)

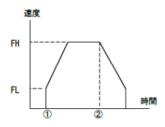

R e g W B F 하위 data(bit7~0) ← 58 h

C O M B F ← 1 0 h (start mode command) :FL정속
START

② 정지할 때 COMBF ← 08h (start mode command :즉정지)

9-1-2. (-)방향FH정속연속동작의 순서예

① 시작할 때 COMBF ← 48h (제어모드Command:[-]방향) COMBF ← EOh (출력모드Command:pulse 출력 유) $COMBF \leftarrow 87h$ (register select command:RENV) FH RegWBF상위 data(bit23~16) ← 00 h RegWBF중위 data(bit15~8) ← 00 h RegWBF하위 data(bit 7~0) ← 02 h COMBF ← 82h (register select command:RFH 001000h) RegWBF상위 data(bit23~16) ← 00 h(생략 가) RegWBF중위 data(bit15~8) ← 10 h RegWBF하위 data(bit 7~0) ← 00h COMBF ← 84h (register select command:RMG 000258h) RegWBF상위 data(bit23~16) ← 00 h(생략 가) RegWBF중위 data(bit15~8) ← 02 h RegWBF하위 data(bit 7~0) ← 58 h COMBF ← 1 1 h (start mode command:FH정속시작)



② 정지할 때 COMBF ← 08h (start mode Command:즉 정지)

9-1-3. (+)방향FH고속연속동작의 순서예

① 시작할 때

COMBF ← 40 h (제어모드Command:[+]방향) COMBF ← EOh (출력모드Command:pulse 출력 유) COMBF ← 87 h (register select commandRENV) RegWBF상위 data (bit23~16) ← 00 h RegWBF중위 data (bit15~8) ← 00 h RegWBF하위 data (bit 7~0) ← 0 2 h COMBF ← 81h (register select command:RFL 000100h) RegWBF상위 data (bit23~16) ← 00 h (생략 가) RegWBF중위 data (bit15~8) ← 01h RegWBF하위 data (bit 7~0) ← 00h COMBF ← 82h (register select command:RFH 001000h) RegWBF상위 data (bit23~16) ← 00 h (생략 가) RegWBF중위 data (bit15~8) ← 10 h RegWBF하위 data (bit 7~0) ← 00h COMBF ← 83h (register select command:RUD 001000h) RegWBF상위 data (bit23~16) ← 0 0 h (생략 가) RegWBF중위 data (bit15~8) ← 10 h RegWBF하위 data (bit 7~0) ← 00h COMBF ← 84h (register select command:RUD 001000h)

② 정지할 때 COMBF ← 1 D h (start mode Command:감속 정지)

RegWBF중위 data (bit15~8) ← 02 h RegWBF하위 data (bit 7~0) ← 58 h

RegWBF상위 data (bit23~16) ← 00 h (생략 가)

COMBF ← 15 h (start mode command: FH고속시작)

9-2. 원점복귀모드

시작후, 원점신호(ORG)가 ON(L level)될 때까지 동작합니다. 동작방향은, 제어모드Command.CCM3에서 설정합니다.(0:[+]방향, 1:[-]방향)

ORG단자가 ON(Low Level)상태에서 시작Command를 작성하여도 시작하지 않습니다. 다만, 정지시에 INT신호를 출력하는 설정을 할 경우는, INT신호를 출력됩니다.

제어모드Command.CCM2=1에 따라, 위치결정제어를 범용해서 최대이동량을 관리하는 것도 가능합니다. 이 경우, 최대이동량을 RMV에 설정하고, 원점스위치의 파손등에 따른 영구동작을 방지할수 있습니다.

FH고속시작시에는, SD신호를 입력하고 FL속도까지 감속시킨 후 ORG신호에서 정지시킵니다. RENV.ORRS=1로 하면 ORG입력 ON(L level) 의 시동할 때 RCUN(현재위치카운터)를 자동리셋합니다.

RENV.ORRS = 1, RENV.ORDS = 1를 하면, ORG입력이 시동되어 RCUN을 리셋하는 동시에 가속을 개시하여 FL속도가 되면 정지합니다. 정지위치는 원점위치는 아니지만. RCUN값에 의해 위치차이량은 관리할수 있습니다.(SD센서 생략가능)

RMV불러내기값(위치결정제어용 다운카운터값)은, 시작시의 값부터 다운카운터합니다.

원점복귀모드에서의 동작방향 <CCM3> 제어모드Command (WRITE) 0:(+)방향 7 0 1:(-)방향 0 1 -1 최대이동량관리포함 제어모드Command (WRITE) 원점복귀모드에서의 동작방향 <CCM3> 7 0 0:(+)방향 0 1 n 1 1:(-)방향 제어모드Command (WRITE) SD신호제어 <CCM1> 7 0 0: +SD,-SD입력신호는 무효 0 1 1 1:+SD,-SD입력 ON에 따라 FL속도까지 감속 출력모드Command <OCM2> (WRITE) 펄스출력제어 7 0 : 출력한다 \cap _ 1 1: 출력하지않는다 1 –

RENV레지스터

n RENV레지스터

- -

_

_

_

n

15

_

RENV레지스터

(WRITE)

_

(WRITE)

(WRITE)

8

n

표 9-3 원점 복귀 mode 설정 관련 항목

9-2-1. (+)방향 F H 정속원점복귀동작의 순서예

① 시작할 때

0 : 펄스출력마다 카운터

COMBF ← 41 h (제어모드Command:원점복귀mode,[+]방향)

COMBF ← E0h (출력모드Command:pulse 출력 유)

ORG입력에 의한 정지방법 <RENV.ORDS>

1:ORG입력시동에서 RCUN을 자동리셋

RCUN(현재위치카운터)의 카운터동작설정

(출력모드Command.OCM1=1일때도 카운터)

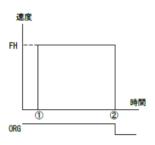
ORG입력에 의한 RCUN자동리셋 <RENV. ORRS>

0:ORG입력ON에서 즉시정지 1:ORG입력ON에서 감속정지

0:RCUN자동리셋기능OFF

<RENV. PSTP>

1: 카운터 정지


COMBF ← 87 h (register select command: RENV)

RegWBF상위 data (bit23~16) ← 00 h

RegWBF중위 data(bit15~8) ← 00 h

RegWBF하위 data (bit $7\sim 0$) $\leftarrow 0.2$ h COMBF $\leftarrow 82$ h (register select command:RFH001000h) RegWBF상위 data (bit23 \sim 16) $\leftarrow 0.0$ h (생략 가) RegWBF중위 data (bit15 ~ 8) $\leftarrow 1.0$ h RegWBF하위 data (bit $7\sim 0$) $\leftarrow 0.0$ h COMBF $\leftarrow 84$ h (register select command:RMG000258h) RegWBF상위 data (bit23 \sim 16) $\leftarrow 0.0$ h RegWBF하위 data (bit15 ~ 8) $\leftarrow 0.0$ h RegWBF하위 data (bit $7\sim 0$) $\leftarrow 0.2$ h

COMBF← 11h (register select command:FH속도 start)

② 정지할 때 ORG 신호입력ON에서 (L level)자동 정지

9-2-2. (+)방향 F H 고속원점복귀동작의 순서예 ① 시작할 때

COMBF ←

4 3 h (제어모드Command:원점복귀mode,SD유효,[+])

COMBF ← E0h (출력모드Command:pulse출력 유)

COMBF ← 87 h (register select command: RENV)

RegWBF상위 data(bit23~16) ← 00 h

RegWBF중위 data(bit15~8) ← 00h

RegWBF하위 data(bit 7~0) ← 02 h

COMBF ← 81h (register select command:RFL 000100h)

RegWBF상위 data(bit23~16) ← 00 h(생략가)

RegWBF중위 data(bit15~8) ← 01h

RegWBF하위 data(bit 7~0) ← 00h

COMBF ← 82h (register select command:RFH 001000h)

RegWBF상위 data(bit23~16) ← 0 0 h (생략가)

RegWBF중위 data(bit15~8) ← 10 h

RegWBF하위 data(bit 7~0) ← 00h

COMBF ← 83h (register select command:RUD001000h)

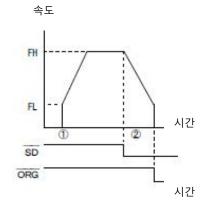
RegWBF상위 data(bit23~16) ← 0 0 h (생략가)

RegWBF중위 data(bit15~8) ← 10 h

RegWBF하위 data(bit 7~0) ← 00h

COMBF ← 84h (register select command:RMG 000258h)

RegWBF상위 data(bit23~16) ← 00 h(생략가)


RegWBF중위 data(bit15~8) ← 02h

RegWBF하위 data(bit 7~0) ← 58 h

COMBF ← 15 h (start mode command: FH고속시작)

② 정지할 때

SD입력 ON(L level)에서 감속하여. ORG신호입력ON(L level)에서 자동정지

9-2-3. 최대이동량관리포함(+)방향FH정속원점복귀동작의 순서예

① 시작할 때

COMBF ← 45h (제어모드Command:원점복귀mode (최대이동량관리부),[+]방향)

COMBF ← EOh (출력모드Command:pulse 출력 유)

 $COMBF \leftarrow 8.7 h$ (register select command:RENV)

RegWBF상위 data (bit23~16) ← 00 h

RegWBF중위 data (bit15~8) ← 00 h

RegWBF하위 data (bit 7~0) ← 02 h

COMBF ← 80 h (reigster select command: RMV 004E20h)

RegWBF상위 data (bit23~16) ← 00 h

RegWBF중위 data (bit15~8) ← 4 E h

RegWBF하위 data (bit 7~0) ← 20 h

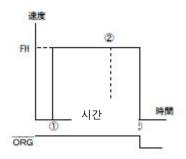
COMBF ← 82h (reigster select command: RFH 1000h)

RegWBF상위 data (bit23~16) ← 00 h (생략 가)

RegWBF중위 data (bit15~8) ← 10 h

RegWBF하위 data (bit 7~0) ← 00 h

COMBF ← 84h (reigster select command: RMG 0258h)


RegWBF상위 data (bit23~16) ← 00 h (생략 가)

RegWBF중위 data (bit15~8) ← 02 h

RegWBF하위 data (bit 7~0) ← 58 h

COMBF ← 1 1 h (start mode command: F H정속시작)

② ORG신호 입력 ON(L level) 라든가, 정수 pulse수 (RMV)를 출력 하는 것에 따라 자동정지합.

9-3. 위치결정모드

펄스수와 방향을 지정해서, 위치결정 동작을 실행합니다.

동작방향은, 제어모드Command.CCM3에서 설정합니다.

RMV레지스터에 출력펄스수를 설정한 후 시작하면, 펄스출력마다 RMV불러내기값이 다운 카운터하여, 값이 "0"이 되면 자동정지됩니다.

RMV설정값은 위치결정동작완료시에 0이 되기 때문에, 전회와 같은 값이여도 매번 설정해주세요.

RMV설정값 = 0의 경우, 시작Command를 작성하여도 시작하지 않습니다. 다만 정지시에 INT신호를 출력하는 설정을 했을 경우에는 INT신호가 출력됩니다.

표 9-4 위치결정 MODE 설정 관련 항목

	표 0 1 개자 2 0 1		
위치결정모드의 동작방향	<ccm3></ccm3>	제어모드Command	(WRITE)
0 : (+)방향		7	0
1 : (-)방향		0 1 n 1	
SD신호제어	<ccm1></ccm1>	제어모드Command	(WRITE)
0:SD입력신호는 무효		7	0
1 : SD입력신호=L에따라FL속도까	·지감속	0 1 1	n –
펄스출력제어	<ocm2></ocm2>	출력모드Command	(WRITE)
0 : 출력한다		7	0
1 : 출력하지않는다		1 1	n –
RCUN(현재위치카운터)의 카운터	동작설정		
<renv. pstp에="" 설정=""></renv.>		RENV레지스터	(WRITE)
0 : 펄스출력마다 카운터		15	8
(출력모드Command.OCM1=1일띠	개도 카운터)		- n
1: 카운터 정지	·		

9-3-1. (+)방향1000펄스FH고속위치결정동작의 순서예

① 시작할 때

COMBF ← 44h (제어모드Command:위치결정 mode,[+]방향)

COMBF ← EOh (출력모드Command:pulse 출력 유)

COMBF ← 87 h (register select command: RENV)

RegWBF상위 data (bit23~16) ← 00 h

RegWBF중위 data (bit15~8) ← 00 h

RegWBF하위 data (bit 7~0) ← 0 A h (슬로다운포인터자동설정)

COMBF ← 80h (register select command:RMV 0003E8h=1000pulse)

RegWBF상위 data (bit23~16)← 00 h

RegWBF중위 data (bit15~8) ← 03h

RegWBF하위 data (bit 7~0) ← E8h

COMBF ← 81h (register select command:RFL 000100h)

RegWBF상위 data (bit23~16) ← 00 h (생략 가)

RegWBF중위 data (bit15~8) ← 01h

RegWBF하위 data (bit 7~0) ← 00h

COMBF ← 82h (register select command: RFH001000h)

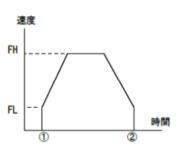
RegWBF상위 data (bit23~16) ← 00 h (생략 가)

RegWBF중위 data (bit15~8) ← 10 h

RegWBF하위 data (bit 7~0) ← 00h

COMBF ← 83h (register select command: RUD 001000h)

RegWBF상위 data (bit23~16) ← 00 h (생략 가)


RegWBF중위 data (bit15~8) ← 10 h

RegWBF하위 data (bit 7~0) ← 00h

COMBF ← 84h (register select command:RMG000258h)

RegWBF상위 data (bit23~16)← 00 h(생략 가)

RegWBF중위 data (bit15~8) ← 02 h

RegWBF하위 data (bit 7~0) ← 58 h

COMBF ← 15 h (start mode command: FH고속시작)

② 정지할 때 1000펄스위치에서 자동정지합니다.

9-4. 타이머모드

펄스출력을 마스크한 상태(출력모드Command.OCM1=1)에서, 정속위치결정동작을 실행함에 따라 동작시간을 타이머로써 사용하는 모드입니다.

(설정시간) = (설정속도의 펄스주기) × (설정펄스수)

타이머모드는, STP신호ON(L level), 정지Command의 작성하기 등의 따라 정지하지만, EL신호, ORG신호가 ON이 되도 정지하지 않습니다.

9-4-1. 100ms의 타이머로써 사용할 때의 순서예 100ms의 시간은, 1000pps에서 100펄스출력하는 시간이므로, 속도를 1000pps에 설정 후, 하기처럼 실행합니다.

COMBF ← 44h (제어모드Command:위치결정동작, [+]방향 COMBF ← E2h (출력모드Command:펄스출력마스크) COMBF ← 87h (레지스터 access command: RENV) RegWBF상위 data (bit23~16) ← 00 h RegWBF중위 data (bit15~8) ← 00 h RegWBF하위 data (bit 7~0) ← 02 h COMBF ← 80h (register access command:RMV 0 0 0 0 6 4 h = 1 0 0 pulse) RegWBF상위 data (bit23~16) ← 00 h RegWBF중위 data (bit15~8) ← 00 h RegWBF하위 data (bit 7~0) ← 64 h COMBF ← 81h (register access command:RFL 0 0 0 3E8 h = 1 0 0 0) RegWBF상위 data (bit23~16) ← 00 h (생략 가) RegWBF중위 data (bit15~8) ← 03h RegWBF하위 data (bit 7~0) ← E8 h COMBF ← 84h (register access command:RMG 0 0 0 258 h 1 HH) RegWBF상위 data (bit23~16) ← 00 h (생략 가) RegWBF중위 data (bit15~8) ← 02h RegWBF하위 data (bit 7~0) ← 58 h

COMBF ← 30 h (시작 mode command: FL정속 시작,정지 때 INT 출력)

인터럽트가 발생하면 타이머업 (100ms) 이 됩니다.

1 0. 속도패턴

1 0 - 1. 속도패턴

표 10-1 속도 패턴

속도패턴	연속동작모드	위치결정모드
FL정속동작 f f f t	 FL정속시작Command(10h) 의 작성하기 즉시정지(08h)/감속정지(1Dh) Command의 작성하기에 의해 정지 	① FL정속시작Command(10h)작성하기 ② 위치결정카운터 = 0 또는, 즉시정지(08h) / 감속정지(1Dh) Command의 작성하기에 따라 정지
FH정속동작 f H 1 1 2	① FH정속시작Command(11h) 의 작성하기 ② 즉시정지(08h)의 작성하기에 의해 정지 ② 감속정지Command(1Dh)를 작성함	① FH정속시작Command(11h)작성하기 ② 위치결정카운터 = 0 또는, 즉시정지(08h)Command의 작성하기에 따라 정지 한 경우 감속정지합니다.
FH고속동작 f fl fl fl fl fl d	① FH고속시작Command(15h) 의 작성하기 ② 감속정지(1Dh) Command의 작성하기에 의해 감속 개시	① FH고속시작Command(15h)작성하기 ② 슬로다운포인트도달 또는, 감속정지Command(1Dh)의 작성하기에 따라 감속개시 ※슬로다운포인트의 설정이 수동설정(RENV.ASDP=0)에서, 슬로다운포인트 설정값(RDP)가 "0"일 경우는 즉지정지합니다.

1 0 - 2. 속도패턴설정

속도패턴의 설정은 아래표의 레지스터로 실행합니다. 설정해야할 값이 전회와 동일할 때에는, 다시 작성할 필요는 없습니다. 다만, RMV값은 동작중에 다운카운터하기 때문에, 같은 이동량의 위치결정동작일 때에도 매번 작성할 필요가 있습니다.

표 10-2 속도 패턴 서정 관련 항목

레지스터	내용	비트길이	설정범위
RMV	이동량설정	24	0 ~ 16,777,215 (FFFFFFh)
RFL	FL속도설정	13	1 ~ 8,191 (1FFFh)
RFH	FH속도설정	13	1 ~ 8,191 (1FFFh)
RUD	가감속레이트설정	16	1 ~ 65,535 (FFFFh)
RMG	속도배율설정	10	2 ~ 1,023 (3FFh)
RDP	슬로다운포인터설정	24	0 ~ 16,777,215 (FFFFFFh)
RIDL	공전펄스설정	3	0 ~ 7 (7h)

[가감속 동작시의 레지스터 데이터의 사용부분]

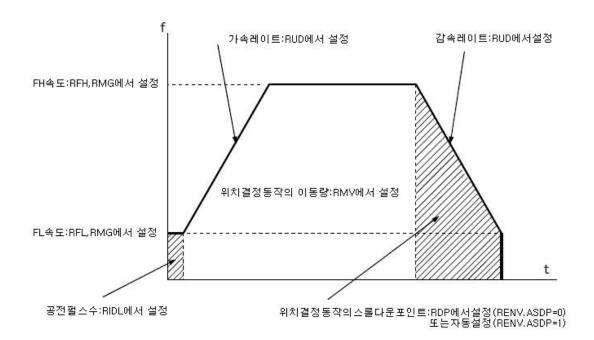


그림 10-1 속도 패턴 설정 개요

◆ R F L : F L 속도설정 (13bit)

FL정속동작의 속도 그리고 고속동작(가감속동작)의 경우의 처음속도를 1(0001h)~8,191(1FFFh)의 범위에서 설정합니다. 속도(pps)는, RMG설정값에 의해 속도배율의 곱이 됩니다.

FL속도[pps] = RFL × 속도배율

◆RFH: FH속도설정 레지스터 (13bit)

FH정속동작의 속도 그리고 고속동작(가감속동작)의 경우의 동작속도를 1(0001h)~8,191(1FFFh)의 범위로 설정합니다. 고속동작(가감속동작)의 경우에는, RFL의 설정값보다 큰값을 설정해주세요. 속도(pps)는, RMG설정값에 따라 속도배율의 곱이 됩니다.

FH속도[pps] = RFH × 속도배율

◆RUD: 가감속레이트설정 레지스터 (16bit)

고속동작(가감속동작)의 경우의 가감속특성을 1(0001h)~65,535(FFFFh)의 범위로 설정합니다. 설정값과 가감속시간의 관계는 다음의 식과 같습니다.

① 직선가감속시 (제어모드Command.CCM5 = 0)

② S자가감속시 (제어모드Command.CCM5 = 1)

◆RMG: 속도배율설정 레지스터 (10bit)

RFL,RFH설정값과 속도의 관계를 2(002h)~1,023(3FFh)의 범의로 설정합니다. 고배율이 될수록 설정할 수 있는 속도간격이 조잡할 수 있기 때문에, 통상은 될수 있으면 작은 배율을 사용합니다. 설정 값과 배율의 관계는 다음 식이 됩니다.

표 10-3 속도 배율 설정 예(기준클록주파수 4.9152MHz일 때)

설정값	속도배율	출력속도범위(pps)			
600 (258h)	1	1 ~ 8,191			
300 (12Ch)	2	2 ~ 16,382			
120 (078h)	5	5 ~ 40,955			
60 (03Ch)	10	10 ~ 81,910			
30 (01Eh)	20	20 ~ 163,820			

설정값	속도배율	출력속도범위(pps)	
12 (00Ch)	50	50 ~ 409,550	
6 (006h)	100	100 ~ 819,100	
3 (003h)	200	200 ~ 1,638,200	
2 (002h)	300	300 ~ 2,457,300	

◆RDP: 슬로다운포인트설정 레지스터 (24bit)

고속(가감속포함)위치 결정동작의 경우에, 감속개시점을 설정합니다. RENV.ASDP [슬로다운포인트설정방식]의 설정상태에 따라, RDP에 설정하는 값의 정의가 달라집니다.

《수동설정시(RENV.ASDP=0)》

감속개시점에서 목표위치까지의 펄스수를 0~16,777,215(FFFFFFh)의 범위로 설정합니다.

슬로다운포인트의 최고치는 다음의 식과 같습니다.

① 직선가감속시 (제어모드Command.CCM5 = 0)

최고치[pulse] =
$$\frac{(RFH^2 - RFL^2)XRUD}{RMG \times 16384}$$

② S자가감속시 (제어모드Command.CCM5 = 1)

최고치[pulse] =
$$\frac{(RFH^2 - RFL^2)XRUD}{RMG X 8192}$$

(위치결정 잔펄스수) ≦ (RDP설정값)의 타이밍으로 감속을 시작합니다.

《자동설정시(RENV.ASDP=1)》

가속특성과 감속특성의 속도커브가 대상형이기 때문에, 가속시에 요구하는 펄스수를 기억해두어, 그 값을 슬로다운포인트 자동설정값으로 사용합니다.

그리고 정상으로 동작하는 자동설정값(가속펄스수)의 범위는 0(000000h)[~]8,388,607(7FFFFFFh)입니다.

RDP설정값은 자동설정값에 대한 OFF세트가 되어, -8,388,608(800000h)~+8,388,607(7FFFFFFh)의 범위에서 설정합니다.

OFF세트량이 정수의 경우, 빠르게 감속을 시작하여, 감속완료후의 FL속도에서 동작하는 구간이 생깁니다.

OFF세트량이 부수의 경우는, 감속개시가 늦어지므로 FL속도까지 감속하지 못하고 정지합니다.

OFF세트가 필요없는 경우에는 "0"을 설정합니다.

1 0 -2-1. 가감속설정패턴 설정예

S자가감속을 사용한 위치결정동작에서, 처음속도=1000[pps], 동작속도=10000[pps], 가감속시간=300[ms], 이동량=4000[pulse]로 설정하는 경우의 가감속 구간에 대한 레지스터 설정 방법은 다음과 같습니다 (기준클록=4.9152MHz)

- ① 제어모드Command = 6 4 h (S자가감속위치결정동작)을 설정합니다.
- ② RMV에 이동량을 설정합니다. RMV = 4000
- ③ 10000[pps]을 출력하기 위해. 속도배율은 2 배모드로 하고. RMG = 3 0 0(12Ch)
- ④ 처음속도는 2배모드에서 1000[pps]로 하기 위해. RFL = 5 0 0(1F4h)
- ⑤ 동작속도는 2 배모드에서 10000[pps]로 하기 위해, RFH=5000(1388h)
- ⑥ 가감속시간부터 가감속레이트 (RUD) 설정값을 구합니다.

RUD = 0.3[s]×4,915,200[Hz] / ((5000-500)×2) = 163.84 RUD설정값은 정수(整数)이므로, 비슷한정수(整数) 164를 설정합니다. 또한, 이 때의 가감속시간은 300.29[ms]이 됩니다.

⑦ 슬로다운포인트 자동설정의 (RENV.ASDP=1)의 경우에는、RDP=0로 합니다. 슬로다운포인트를 수동설정할 때에는 (RENV.ASDP=0)로 하고, RDP설정값을 산출합니다.

RDP설정값 =
$$\frac{(RFH^2 - RFL^2)XRUD}{RMG X 8192}$$

 $= (50002 - 5002) \times 164 / (300 \times 8192) = 1651.6$

소수점을 정수(整数)화해서, RDP설정값=1651

- ⑧ 고속시작Command(15h)를 작성하기 합니다.
- 1 0 3. 동작중의 속도패턴 변경에 대해서

동작중의 RFL, RFH, RUD레지스를 변경함에 따라, 속도나 가속도를 변경할 수 있다.

《직선가감속동작시의 속도변경》

속도

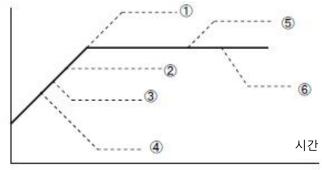


그림 10-2 동작 중의 속도 패턴 변경 (직선)

- ① 가속중에 RFH를 크게하면, 그 속도까지 가속을 계속합니다. (구속도<신속도)
- ② 가속중에 RFH를 작게하면, 그 속도까지 가속해서 정속됩니다. (현재속도<신속도<구속도)
- ③ 가속중에 RFH를 작게하면, 그 속도까지 감속합니다. (RFL≦신속도<현재속도)
- ④ 가속중에 RFH를 작게하면, 그 속도까지 감속합니다. (신속도<RFL)
- ⑤ 가속완료후에 RFH를 크게하면, 그 속도까지 가속합니다.
- ⑥ 가속완료후에 RFH를 작게하면, 그 속도까지 감속합니다.

《S자가감속동작시의 속도변경》

속도

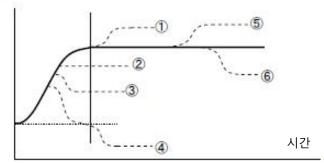


그림 10-3 동작 중의 속도 패턴 변경 (S자)

- ① 가속중에 RFH를 크게하면, 구속도까지 가속후, 신속도까지 재가속합니다. (구속도<신속도)
- ② 가속중에 RFH를 작게하면, 그 속도까지 가속해서 정속이 됩니다. (현재속도<신속도<구속도)
- ③ 가속중에 RFH를 작게하면, 그 속도까지 감속합니다. (RFL≦신속도<현재속도)
- ④ 가속중에 RFH를 작게하면, FL속도까지 감속후, 신속도까지 재감속합니다. (신속도<RFL)
- ⑤ 가속완료후에 RFH를 크게하면, 그 속도까지 가속합니다.
- ⑥ 가속완료후에 RFH를 작게하면, 그 속도까지 감속합니다.

10-4 Slow down point 자동 설정 때의 속도 패턴 변경의 제한 아래의 경우 slow down point자동 설정 기능이 추종 할 수 없게 됩니다.

- RFL,RUD register 값을 변경
- S자 가감속 중에 RFH register값을 변경

상기와 별도로 정속 동작 중 또는 직선 가감속 중에 RFH register 값을 복수 회 변경한 경우 slow down point의 오차가 누적 하는 경우가 있습니다.

1 1. 기능설명

11-1. 리셋

RST단자를 Low Level로 하여, 기준클록을 3클록이상 입력하면 본LSI이 리셋됩니다. 전원투입부터 리셋되는 사이는 전레지스터와 전출력단자의 상태는 불안정합니다. 리셋 후에는 하기의 초기상태로 됩니다.

표 11-1 리셋 해제 때의 초기 상태

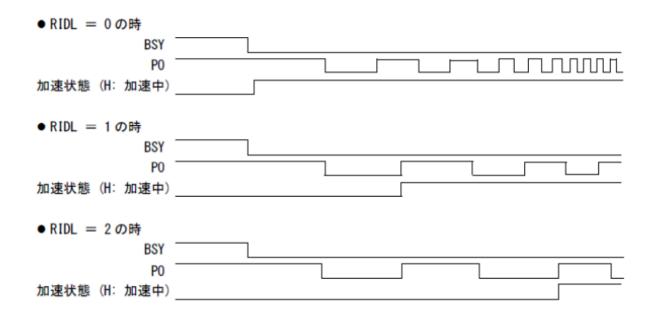
내용	초기상태	조건
시작모드Command	00h	
제어모드Command	40h	
레지스터선택Command	80h	
출력모드Command	C0h E0h	Parallel I/Fλ Serial I/Fλ
메인스테이터스(MSTS)	37h	
레지스터 쓰기 버퍼 (RegWBF)	000000h	
레지스터 읽기 버퍼 (RegRBF)	000000h	
RMV,RFL,RFH,RUD,RMG,RDP,RIDL,RENV,RCUN,RIOP레지스터	0h	
RENV register	000000h 000002h	Parallel I/Fλ Serial I/Fλ
RSTS레지스터(확장 status)	0x11 x001 1xxx xxxxb	
	98h	PCD4611A
RIDC레지스터(제품정보 code)	A8h	PCD4621A
	C8h	PCD4641A
RSP0레지스터	00h 00xx xxxxb	Parallel I/FA Serial I/FA
RSPM 레지스터	00h 3Fh	Parallel I/FAI Serial I/FAI
D0~D7단자	Hi-z	Parallel I/F시
SP0 ~ SP5 단자	입력단자 상태	Serial I/F시
INT, WRQ, +PO/PLS, -PO/DIR, BSY단자	H레벨	
OTS단자	L레벨	
PH 1 / P 1, PH 2 / P 2, PH 3 / P 3, PH 4 / P 4 단자	H,L,L,H	U/B단자=L
TITT / T T , TITZ / F Z, TITS / F 3, TIT4 / F 4 현자	H,L,L,L	U/B단자=H

^{*}입력단자에서 변화

1 1 - 2. 아이들링펄스출력

FH고속 시작시, 통상의 시작직후부터 가속을 시작하지만, FL속도에서 N개의 펄스를 출력하고 부터 가속을 시작시킬 수 있습니다.

통상 최초의 출력펄스의 주기에서 역산한 속도는 FL설정속도 보다 높아져, FL속도를 자기동주파수 부근에 설정하면 자기동 할 수 없는 경우가 있습니다.


여기서 FL속도에서 수 펄스출력 후에 가속을 시작시키는 것으로, 확실하게 FL속도부터 시작합니다.

이때의 FL속도의 펄스를 아이들링펄스로 출력, 아이들링 펄스수는 RID레지스터에 설정합니다.

설정범위는 0~7로, 고속(가속소 부)동작시에 유효됩니다.

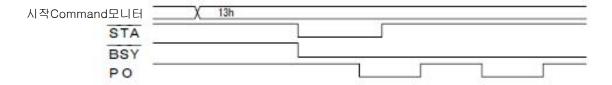
0에 설정한 경우는, 통상시작이 됩니다.

출력펄스열(PO)를 부논리출력할 때의 타이밍은 하기처럼 됩니다.

1 1 - 3. 외부시작제어

본LSI를 외부신호(STA신호)에 의해 시작할 수 있습니다. 다축의 동시 시작 등에 이용할수 있습니다.

시작모드Command.SCM1 = 1 로 하고, 시작보류포함의 시작Command를 작성합니다. 이후. STA단자 시동Edge에 의해 보류가 해지되어 시작합니다. 보류상태의 중지는 즉시정지Command에 따라 움직입니다. STA입력신호는 기준클록 4주기분 이상의 pulse폭으로 입력 바랍니다.


보류상태중에 STP입력이나 동작방향에 대응한 EL신호, ORG신호 (제어 mode command CCM0 = 1의 때)를 입력하면 부류정지상태가 내부에

기억되어 STA신호를 입력해도 동작 하지 않습니다.

보류정지상태에서 STA신호를 입력해도 동작 하지 않고, 보류 정지 상태가 해제되어, 정지 상태가 됩니다. Start command 쓰기때는 동작 합니다. 정지 interrupt는 보류 정지 상태 개시 때에 발생 합니다.

정지상태가 될 때, RFL불러내기의 레지스터 읽기 용 버퍼(bit 23~16)의 시작Command모니터의 시작제어비트(SCM4)는 "1"에서 "0"로 변화합니다. 상기의 동작에 대하여는 「11-11-6 start 보류 정지 timing」을 참조 바랍니다.

● 시작타이밍 (FH정속시작보류)》

1 1 - 4. 외부정지제어

본LSI를 외부신호에 의해 정지시킬 수 있습니다. 긴급정지나 다축의 동시정지등에 이용 가능합니다.

STP단자가 L Level이 되면, 즉시정지 또는 감속정지합니다. RENV.SPDS = 0 에서 즉시정지, RENV.SPDS = 1 에서 감속정지 됩니다.

STP단자가 L Level 사이에는, 시작Command를 작성 하여도 펄스출력하지 않고 동작완료가 됩니다.

이 경우에도 정지시 INT신호를 출력하는 것도 가능합니다.

또 이 신호는 출력모드Command.OCM4 설정에 따라,필터를 삽입 할 수 있습니다. 이 필터는 기준 CLOCK3 주기미만의 노이즈를 제거 합니다. 그 때 필터 삽입때는 기준 CLOCK 4주기 (4.9152[MHz]때에서 약 800[NS]이상의 pulse를 입력 바랍니다. 필터 없는 경우는 pulse폭 800[ns]이하의 pulse신호에서도 받습니다.

필터 삽입의 선택은 ORG. +EL. -EL.STP신호로 공통 입니다.

1 1 - 5. 출력펄스모드

출력펄스모드에는 2펄스모드와 공통펄스모드가 있고, RENV.PMD설정에서 선택합니다. RENV.PMD=0일 때는, 2펄스모드가 되어 (+)방향동작시에는(+PO/PLS)단자부터, (-)방향동작시에는(-PO/DIR)단자부터 펄스열신호를 출력합니다. RENV.PMD=1일 때는. 공통펄스모드가 되어 (+PO/PLS)단자부터 펄스열신호를. (-PO/DIR)단자부터 방향신호를 출력합니다. 또한 출력신호의 논리는 출력모드Command.OCMO에서 변경 가능 합니다.

표 11-2 출력 PULSE MODE

RENV. PMD	PMD 00M0 (+)방향동작시		(一) 방향동작시
0	0	+P0	+P0 H -P0 L
0	1	+P0	+P0 L
1	0	PLSDIR H	PLS DIR L
1	1	PLS	PLS

1 1 - 6. 여자(励磁)시퀀스 출력

2상 스테핑모터용의 2-2상 그리고, 1-2상용의 여자(励磁)시퀀스를 유니폴라 가동용 또는 하이폴라 가동용의 형태로 발생할 수 있습니다.

여자(励磁)시퀀스 신호는 PH1 / P1, PH2 / P2, PH3 / P3, PH4 / P4의 4단자에서 출력됩니다. 이 4단자는 범용입출력포트단자를 겸용하고 있기 때문에, 여자(励磁)시퀀스 신호를 출력 시킬 때에는 RENV.IOPM = 0 에 설정해 주세요.

유니폴라용/하이폴라용의 변경은 U/B단자에서 합니다만, 이 설정은 RST단자=L상태일 때 설정레벨을 Latch하므로 설정상태를 변경한 후는 본 LSI의 reset이 필요합니다.

2-2상여자(励磁)/1-2상여자(励磁)의 변경은, F/H단자에서 합니다. 이 설정은 Latch하지 않기 때문에 동작중에 변경도 가능합니다.

1-2상(励磁)의 1상여자(励磁)상태(표의 11-3, 표 11-4dml 1-2상여자(励磁)의 STEP 1,3,5,7)에서 2-2상여자(励磁)에 변경할 경우, 다음의 출력 펄스에서 2상여자(励磁)상태가됩니다.

2-2 (F/H=L)

STEP 0 1 2 3 0

Ф 1 H H L L H

Ф 2 L H H L L

Ф 3 L L H H L

Ф 4 H L L H H

SPHZ H L L L (-) ← 동작방향 → (+)

표 11-3 Unipolar 려자 시퀜스 (U/B = L)

STEP	0	1	2	3	4	5	6	7	0
Ф1	Н	Н	Н	L	L	L	L	L	Н
Ф2	L	L	Н	H	H	L	L	L	L
Ф3	L	L	L	L	H	H	H	L	L
Φ4	H	L	L	L	L	L	Н	H	H
SPHZ	Н	L	L	L	L	L	L	L	Н

표	11 - 4	하이폴라여자(励磁)시퀀스] ((U/B=H)

2-2 상여자 (F/H=L)								
STEP	0	1	2	3	0			
Ф1	Н	H	L	L	H			
Ф2	L	Н	H	L	L			
Ф3	L	L	L	L	L			
Ф4	L	L	L	L	L			
SPHZ	Н	L	L	L	H			
(-)	- 동	작방	향 =	→ (+))			

	. 1	-2 ≥	상여지	F ((F/H	(H=I	li.		
STEP	0	1	2	3	4	5	6	7	0
Ф1	H	H	Н	H	L	L	L	L	H
Ф2	L	L	Н	Н	Н	H	L	L	L
ФЗ	L	L	L	H	L	L	L	Н	L
Ф4	L	H	L	L	L	H	L	L	L
SPHZ	H	L	L	L	L	L	L	L	H
	(-)	+	동	작방향	향	→ ((+)		

주의

- SPHZ는, RSTS.SPHD로써, 여자(励磁)원점모니터신호로써, 스테이터스에서 확인가능합니다.
- 출력모드Command.OCM2=1로 하면, PH 1 ~PH 4 의 출력이 아래와 같이 고정 됩니다. (RENV.MSKM = 0): PH1 = L, PH2 = L, PH3 =L, PH4 = L

(RENV.MSKM = 1): PH1 = L, PH2 = L, PH3 =H, PH4 = H

[여자(励磁)시퀀스의 변화 타이밍]

펄스열출력신호가 ON상태부터 OFF상태로 변화할 때에, 시퀀스신호가 변화합니다.

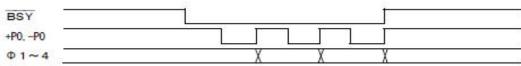


그림 11-1 려자 시퀜스의 변화 TIMING

표 11-5 려자 시퀜스 출력 설정 관련 항목

려자 시퀜스신호의 마스크 <ocm2></ocm2>	出力モードコマンド (WRITE)
0:PH1~4단자부터 시퀜스 신호를 출력	7 0
1:PH1~4단자의 시궨스 출력을 마스크 한다	n
여자(励磁)시퀀스 출력마스크 때의 출력설정 <renv.mskm></renv.mskm>	RENV レジスタ (WRITE)
(출력 mode command. OCM2 = 1때 만 유효)	7 0
0:PH1 = L PH2 = L, PH3 = L, PH4 = L	n
1: PH1 = L, PH2 =L, PH3 =H, PH4 = H	
려자 원점 모니터 <rsts, sphz=""></rsts,>	RSTS レジスタ(READ)
0 : 시퀜스 출력 (PH1 ~ 4) STEP은 려자 원점위치에서는	7 0
없음	n
1 : 시퀜스 출력 (PH1 ~ 4)STEP이 려자 원점위치 이다	
여자(励磁)시퀀스신호 모니터 <rsts.sph1 sph4="" ~=""></rsts.sph1>	RSTS レジスタ(READ)
Bit 11: PH4, bit 10: PH3, bit 9: PH2, bit 8: PH11	15 8
0 : L level	n n n n
1 : H level	

11-7. 기계계 외부 입력제어

기계계부터 위치검출신호로써 다음의 3계통 5신호의 입격을 접수 합니다.

표 11-6 기계계 외부 입력 신호

계통	신호
End limit 검출 신호	+EL, -EL
Slow down point 검출 신호	+SD, -SD
원점 신호	ORG

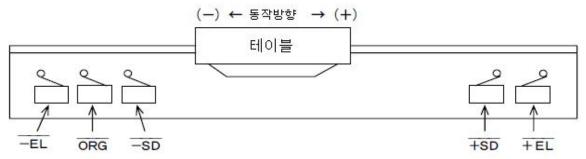


그림 11-2 기계계 외부 입력 제어 예

11-7-1 End limit 검출 신호

동작방향과 동일방향의 EL신호(+방향동작시에는 +EL신호)가 L 레벨이 되면, 즉시정지/감속정지(RENV.ELDS에서 선택)하고, H 레벨로 돌아와도 정지 한 채로 됩니다. 시작모드Command.SCM5=1로 하여 동작시키면, 이 신호에 의해 정지힐 때의 INT신호를 출력할 수도 있습니다.

이 신호가 L 상태일 때에는 시작Command를 작성해도 신호와 동일방향에는 시작하지 않지만, INT신호는 출력됩니다.

출력모드Command.OCM=1로 하여 펄스 출력을 마스크하면 EL신호는 무효가 되지만, 스테이터스(RSTS.SPEL. RSTS.SMEL)에서의 모니터가 가능합니다.

또 이 신호는 출력모드Command.OCM4의 설정에 의해 필터를 삽입 할 수 있습니다.

이 필터는 기준클록3주기 미만의 노이즈를 제거 합니다.

이 때문에 필터 삽입은 기준 클럭 4주기 (4.9152MHz일 때에 약 800ns)이상의 신호 폭으로 입력 바랍니다.

필터 없는 경우는 펄스폭800ns이하의 펄스신호여도 받을 수 있습니다.

입력감도의 선택은 ORG, +EL, -EL, STP신호에서 공통입니다.

11-7-2 Slow Down point 검출 신호

제어모드Command.CCM1=1로 하여 SD 신호제어를 유효로 할 경우, 고속동작중의 동작방향과 같은 방향의 SD신호가 L 레벨 되면 감속을 시작합니다. 이후 H 레벨로 돌아오면 다시 가속합니다.

SD신호제어가 유효로, 이 신호가 L레벨의 경우, 고속시작Command를 작성해도 가속하지 않고 FL속도로 동작합니다. 또한 감속동작중의 SD신호는 무효입니다. 제어모드Command.CCM1의 설정과 관계없이 스테이터스(RSTS.SPSD, RSRS.SMSD)에서 모니터 가능합니다.

11-7-3 원점 신호

제어모드Command.CCM0=1로 하여 ORG신호제어를 유효(원점복귀동작)로 했을 경우, 이 신호가 L 레벨이 되면 즉시 정지/감속 정지 (RENV.ORDS에서 선택)하고, 그 후 H레벨로 돌아와도 정지한 상태가 됩니다.

시작모드Command.SCM5=1로 해서 동작시키면 이 신호에 의해 정지할 때에 INT신호를 출력 할 수도 있습니다. 이 신호가 L 레벨사이는 시작Command를 작성해도 시작되지 않지만, INT신호는 출력됩니다.

제어모드Command.CCM0의 설정상태에 관계없에 스테이터스(RSTS.SORG)에서 모니터 할 수 있습니다.

출력모드Command.OCM1 설정에서 펄스 출력을 마스크할 때에는 ORG신호는 무효로 되지만 스테이터스(RSTS.SORG)에서의 모니터는 할 수 있습니다.

그리고 이 신호도 EL, STP신호와 같은 필터를 삽입 할 수 있습니다.

11-8. 인터럽트신호 출력

정지시, 슬로다운포인트 통과, 외부시작시의 3개의 요인에서 INT신호를 출력 할 수 있습니다.

정지시의 인터럽트는 시작모드Command.SCM5에서 슬로다운포인트의 통과 때의 인터럽트는 레지스터선택Command.RCM4에서 외부시작시의 인터럽트는 레지스터선택 Command.RCM5에서 각각 제어합니다.

각각의 인터럽트 제어 비트를 "1"로 설정함으로써, 요인발생시에 INT신호를 출력합니다.

INT요인의 clear는 각각의 제어비트에 "0"을 설정합니다.

모든 INT요인을 clear 하면 INT신호가 clear 됩니다.

또 조건 성립 때에 interrupt요인을 발생 시키지 않도록 하는 경우도 각각의 제어 bit "0"에 설정합니다.

제어비트를 "1"에 설정한 어떤 interrupt 원인이 발생했을 때에 INT신호가 출력됩니다. 어느 interrupt 요인이 발생했을 지의 판별은 메인 스테이터스(MSTS.ISTP, MSTS.ISDP, MSTS.ISTA)에서 확인 부탁 드립니다.

그리고 INT신호의 출력상태는 스테이터트(RSTS.SINT)에서 확인 가능합니다.

다만 본 단자를 사용할 때에는 외부에 풀업저항($5KΩ\sim10KΩ$)를 접속할 필요가 있습니다. 또한 본LSI를 여러 개 사용하는 경우에는, INT단자들을 Wired OR 접속할 수 있습니다.

[슬로다운포인트 인터럽트 이용법]

슬로다운포인트 통과 시의 interrupt는 다운카운터값(RMV)과 슬로다운포인터값(SDP)를 비교해서 RMV≦SDP된 지점에서 INT신호를 출력합니다.

또한 슬로다운포인터가 수동설정(RENV.ASDP=0)일 때에는 SDP값=RDP설정값입니다. 그리고 위치결정동작을 고속시작 할 때만, RMV≦SDP상태에서 감속을 시작합니다.

이를 위해 정속에서 위치결정동작을 할 때에는 잔펄스용의 컴퍼레이터로써 사용 가능합니다.

표 11-7 interrupt 설정 관련 항목

정지시의 인 <u>터럽트</u> 제어 <scm5></scm5>	시작모드Command	(WRITE)
0 : 정지시에 <u>INT</u> 신호를 출력안한다.(본 INT요인 clear)	7	0
1 : 정지시에 INT신호를 출력한다.	0 0 n	
슬로다운포인터에서의 인 <u>터</u> 럽트 제어 <rcm4></rcm4>	레지스터선택Command	(WRITE)
0 : 슬로다운포인터에서 <u>INT</u> 신호를 출력안한다.	7	0
(본 INT요인 clear)	1 0 - n	- - -
1 : 슬로다운포인터에서 INT신호를 출력한다.		
외부시작시의 인터 <u>럽</u> 트 제어 <rcm5></rcm5>	레지스터선택Command	(WRITE)
0: 외부시작시에 INT신호를 출력안한다.	7	0
(본 INT요인 clea <u>r)</u>	1 0 n	-
1: 외부시작시에 INT신호를 출력한다.		
인터럽트 신호출력모니터 <rsts.sint></rsts.sint>	RSTS레지스터	(READ)
0 : MSTS의ISTP, ISDP, ISTA 전부 OFF상태	15	8
1 : MSTS의ISTP, ISDP, ISTA 어느 하나가 ON상태	n – – – – –	
정시시의 인터럽트 모니터 <msts.istp></msts.istp>	메인스테이터스	(READ)
0 : 정지시의 INT신호를 출력중	7	0
1 : 정지시의 INT신호를 출력하지 않는다.		- – n
슬로다운포인터의 인터럽트 모니터 <msts.isdp></msts.isdp>	메인스테이터스	(READ)
0 : 슬로다운포인터에서의 INT신호를 출력중	_ 7	0
1 : 슬로다운포인터에서의 INT신호를 출력하지 않는다.		- n –
외부시작시의 인터럽트 모니터 <msts.ista></msts.ista>	메인스테이터스	(READ)
0 : 외부시작시의 INT신호를 출력중	7	0
1 : 외부시작시의 INT신호를 출력하지 않는다.	r	1

11-9. 범용포트

11-9-1. OTS단자

범용출력 포트전용 단자 입니다.

출력상태는 제어모드Command.CCM4에서 변경 가능합니다.

표 11-8 OTS 단자 설정 관련 항목

OTS단자 레벨의 제어	<ccm4></ccm4>	제어모드Command				(WRITE)					
0 : OTS단자를 Low level로	한다.		7							0	
1 : OTS단자를 High levels	문 한다.		0	1	_	n	-	_	_	_	1

11-9-2. U/B, F/H단자

려자(励磁)시퀀스 출력방식을 설정하기 위한 입력단자입니다.

이 두단자의 입력 상태는 RIOP.MUB, RIOP.MFH에서 모니터 할 수 있습니다. 려자(励磁)시퀀스 출력 신호를 사용하지 않을 때에 범용 입력 포트로서 사용 할 수 있습니다.

표 11-9 U/B. F/H단자 관련 설정 항목

U / B 단자레벨의 모니터 <riop.mub></riop.mub>	RIOP레지스터	(READ)					
0 : U / B 단자는 Low level	7	0					
1 : U / B단자는 High level	0 0 -	n – – – –					
F / H단자레벨의 모니터 <riop.mfh></riop.mfh>	RIOP레지스터	(READ)					
O · C / LICLTI \ Law lavel	7	0					
0 : F / H단자는 Low level		 					

11-9-3. P1~P4단자

이 4단자는 려자(励磁)시퀀스신호(PH1~PH4)의 출력포트의 겸용 단자로 되어 있습니다. 려자 시퀜스 신호 (PH1~PH4)의 출력 단자로서 사용 할 지, 범용 입출력포트로써 사용 할 지의 선택은 RENV.IOPM설정에서 행합니다. 초기 상태는 려자 시퀜스 신호로서 사용 하는 설정이 되어 있습니다.

범용입력 포트(P1~P4)로서 상용 하는 경우는 (RENV.IOPM = 1),RENV register (RENV.IPM1 ~ IPM4)에서 범용 입력/ 범용출력의 절환을, RIOP register 에서 출력 상태의 설정과 단자 상태의 모니터를 할 수 있습니다.

초기 상태에서는 PH1~PH4의 출력 단자가 됩니다.

[주의] 범용 입력단자로서 사용하는 경우에는 주의 사항이 있습니다. 상세는 「14-1-6 범용 입출력 포트 (P1~P4)를 범용 입력에서 사용 하는 경우 」를 참조 바랍니다.

표 11-10 P1 ~ P4 단자 설정 관련 항목

P1~P4단자의 사용방법의 선택	RENV레지스터 (WRITE)
<renv.iopm></renv.iopm>	15 8
0 : 여자(励磁)시퀀스신호(PH1~PH4)의 출력단자	
1 : 범용입출력포트(P1~P4)의 입출력단자.	n
P 1 범용입출력단자의 사양선택 <renv.ipm1></renv.ipm1>	RENV레지스터 (WRITE)
0 : P 1 단자는 범용출력단자	_15 8
1 : P 1 단자는 범용입력단자	n
P 2 범용입출력단자의 사양선택 <renv.ipm2></renv.ipm2>	RENV레지스터 (WRITE)
0 : P 2 단자는 범용출력단자	15 8
1 : P 2 단자는 범용입력단자	n
P 3 범용입출력단자의 사양선택 <renv.ipm3></renv.ipm3>	RENV레지스터 (WRITE)
0 : P 3 단자는 범용출력단자	15 8
1 : P 3 단자는 범용입력단자	- N
P 4 범용입출력단자의 사양선택 <renv.ipm4></renv.ipm4>	RENV레지스터 (WRITE)
0 : P 4 단자는 범용출력단자	_15 8
1 : P 4 단자는 범용입력단자	n

범용입출력단자 레벨의 모니터 <riop.cp4-cp1></riop.cp4-cp1>	RIOP레지스터	(READ)
비트 0 : P 1 단자모니터, 비트 1 : P 2 단자모니터	7	0
비트2 : P 3 단자모니터, 비트3 : P 4 단자모니터	0 0 n	n n n
범용출력단자의 제어(0 : L 레벨, 1 : H 레벨) <riop.cp4-cp1></riop.cp4-cp1>	RIOP레지스터	(WRITE)
비트 0 : P 1 출력레벨제어, 비트 : P 2 출력레벨제어	/	
비트2:P3출력레벨제어, 비트3:P4출력레벨제어	0 0 n	n n n

11-10. 공용 포트

11-10-1. SP0 ~ SP5 단자

Serial I/F때에 범용 입출력 포트로서 사용 할 수 있는 공용 포트(Shared Port) 입니다. 범용 포트 P1~P4단자는 축 단위에서 존재하고 있는 것에 대하여 공용 포트 SP0~SP5단자는 축수에 관계 없이 LSI단위에서 한 개만 존재 합니다. RSPM에서 범용 입력/범용 출력의 전환을 RSP0에서 출력 상태의 설정과 단자 상태의 모니터를 행합니다.

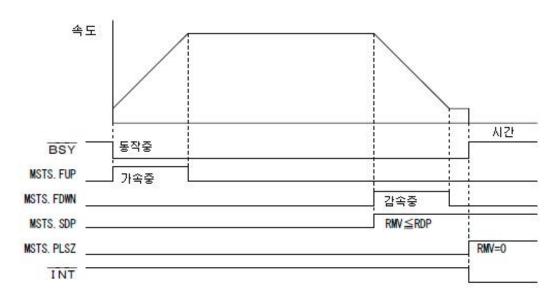
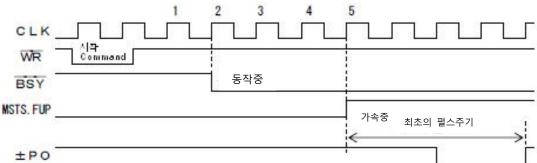
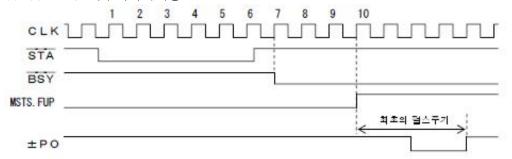

초기 상태는 모두 범용 입력 신호 입니다.

표 11-11 SP0~SP5단자 설정 관련 항목

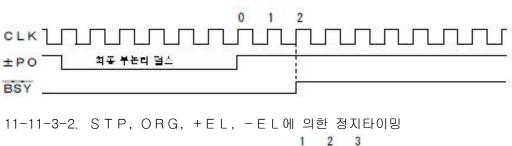
		/···
SPO 공용입출력단자의 사양선택 <rspm.spmo></rspm.spmo>	RSPM레지스터	(WRITE)
0 : SPO 단자 범용출력 단자	7	0
1 : SPO 단자 범용입력 단자.		n
SP1 범용입출력단자의 사양선택 < RSPM.SPM1>	RSPM레지스터	(WRITE)
0 : SP1 단자는 범용출력단자	_ 7	0
1 : SP1 단자는 범용입력단자		- - n -
SP2 범용입출력단자의 사양선택 <rspm.spm2></rspm.spm2>	RSPM레지스터	(WRITE)
0 : SP2 단자는 범용출력단자	7	0
1 : SP2 단자는 범용입력단자		- n
SP3 범용입출력단자의 사양선택 < RSPM.SPM3>	RSPM레지스터	(WRITE)
0 : SP3 단자는 범용출력단자	7	0
1 : SP3 단자는 범용입력단자		n – – –
SP4 범용입출력단자의 사양선택 < RSPM.SPM4>	RSPM레지스터	(WRITE)
0 : SP4 단자는 범용출력단자	7	0
1 : SP4 단자는 범용입력단자	- - n	
SP5 범용입출력단자의 사양선택 < RSPM.SPM5>	RSPM레지스터	(WRITE)
0 : SP5 단자는 범용출력단자	7	0
1 : SP5 단자는 범용입력단자	n -	
공용단자 레벨 모니터 <riop.cp4-cp1></riop.cp4-cp1>	RSPO레지스터	(READ)
비트 0 : P 1 출력레벨제어, 비트 : P 2 출력레벨제어	7	0
비트2 : P 3 출력레벨제어, 비트3 : P 4 출력레벨제어	0 0 n n	n n n n
범용출력단자 제어 (0:L레벨,1:H레벨) <rspo.sp05-sp01></rspo.sp05-sp01>	RSPO레지스터	(WRITE)
비트0 : SP0 출력레벨설정, 비트1 : SP1 출력레벨설정	7	(VVNITE) 0
비트2 : SP2 출력레벨설정, 비트3 : SP3 출력레벨설정	0 0 N n	
비트4 : SP4 출력레벨설정, 비트5 : SP5 출력레벨설정	0 0 N n	n n n n

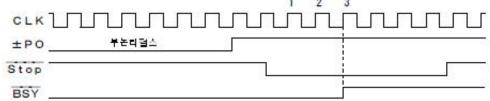

11-11. 동작타이밍

11-11-1. 가감속동작타이밍 (위치결정동작)

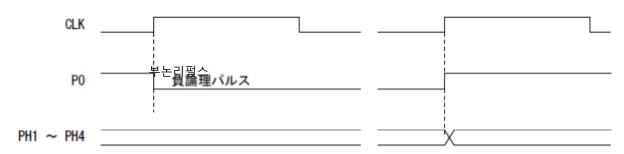


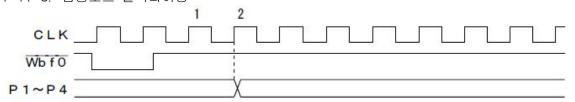
11-11-2. 시작타이밍




11-11-2-2. 외부시작타이밍

11-11-3. 정지타이밍


11-11-3-1. 위치결정동작완료타이밍



- 注意. 1.S t o p 은 가상신호로 STP, ORG, + E L, E L 중 하나가 L레벨일 때 S t o p = L 이 됩니다.
 - 2.출력모드Command.OCM4 = 1 로하고 저감도 입력을 하면 BSY의 가동이 위의 그림보다도4·CLK주기분만 늦어집니다.
 - 3.PO가 ON状態상태(H level)일 때에S t o p = L 이 되면, PO가OFF상태가 (L 레벨)될 때에 BSY가 가동합니다.

11-11-4. 펄스출력, 시퀀스출력타이밍

11-11-5. 범용포트 출력타이밍

주의. Wbf0는 가상신호로 레지스터선택Command에서 RIOP를 선택한 후의 레지스터WR버퍼(7~0)에의 작성하기 시의 WR신호

1 2. 전기적 특성

1 2 - 1. 절대최대정격

PCD4611A, PCD4621A, PCD4641A 공통의 값 입니다.

표 12-1 PCD46x1A 절대 최대 정격

항목	기호	정격	단위
전원전압	Voo	0.3 ~ +4.0	V
입력전압	VIN	-0.3 ~ +7.0	V
출력전류/단자	Гоит	± 3 0	m A
보존온도	Tstg	-65 ~ +150	\mathbb{C}

1 2 - 2. 추천동작조건

PCD4611A, PCD4621A, PCD4641A 공통의 값 입니다.

표 12-2 PCD46x1A 추천 동작 조건

항목	기호	정격	단위
전원전압	VDD	0.3 ~ 3.6	V
입력전압	VIN	- 0.3 ~ +5.8	V
주의온도	Ta	-40 ~ +85	$^{\circ}$

12-3. DC특성 (추천동작조건시)

PCD4611A, PCD4621A, PCD4641A 공통의 값 입니다.

표 12-3 DC 특성 (추천 동작 조건 때)

항목	신호	조건	Min	Type	Max	단위
정적소비전류	IDDS	VI=VDD or GND,VDD=Max,무부하			35	μА
	loo	PCD4611 주1			3	
소비전류 (CLK=4.9152MHz)		PCD4621 주 1			5	m A
(32.1		PCD4641 주 1			9	
	loo	PCD4611 주2			5	
소비전류 (CLK=10.000MHz)		PCD4621 주2			9	m A
(02.1 10.000		PCD4641 주2			17	
	lu	VDD=Max,VIH=VDD,VIL=GND 주3	-1		+1	
입력리크전류		VDD=Max,VIH=VDD,VIL=GND 주4	-90		+1	μА
		VDD=Min,VIH=5.5V			+30	
고레벨입력전압	VIH	VDD=Max	2.0		5.8	V
저레벨입력전압	VIL	VDD=Min	-0.3		0.8	V
고레벨출력전압	Vон	VDD=Min,IOH=-6mA	VDD -0.4			V
저레벨출력전압	Vol	VDD=Min,IOL=6mA			0.4	V
고레벨출력전류	Іон	VDD=Min,VOH=VDD-0.4V			-6	m A
저레벨출력전류	loL	VDD=Min,VOL=0.4V			6	m A
내부풀업저항치	Rpu	VI=VDD or GND 주4	40	100	240	kΩ
입력단자용량	Сі	f=1MHz, VDD=GND			10	рF
출력단자용량	Со	f=1MHz, VDD=GND			10	рF
입출력단자용량	Сю	f=1MHz, VDD=GND			10	рF

주 1. CLK=4.9152MHz、전축최고속도(2.457Mpps)에서 동작할 때.(전출력단자는 무부하상태)

주 2. CLK=10.000MHz、전축최고속도(4.999Mpps)에서 동작할 때.(전출력단자는 무부하상태)

주3. D0~D7, A0~A3, RD, WR, CS, CLK단자 주4. ORG, +EL, -EL, +SD, -SD, STA, STP, U/B, F/H, RST단자

12-4. A C특성

12-4-1. 기준클록

PCD4611A, PCD4621A, PCD4641A 공통의 값 입니다.

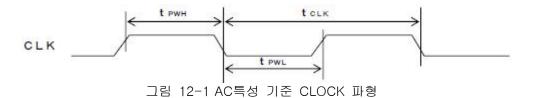


표 12-4 AC 특성 기준 CLOCK

항목	신호	조건	Min	Max	단위
클록주파수	fclk			10	MHz
클록주기	tclk		100		ns
클록H레벨시간	tрwн		40		ns
클록L레벨시간	tpwL		40		ns

12-4-2. 리셋Cycle

PCD4611A, PCD4621A, PCD4641A 공통의 값 입니다.

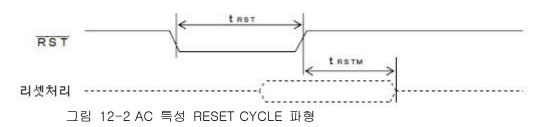


표 12-5 AC특성 RESET CYCLE

			='		
항목	기호	조건	Min	Max	단위
RST 신호폭	trst		tclk X 3		ns
리셋처리시간	trstm		tclk X 3	tclk X 4	ns

12-4-3. Parallel I/F ReadCycle

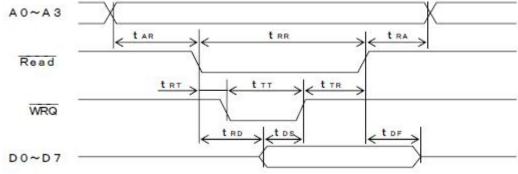


그림 12-3 AC 특성 Parallel I/F Read access 파형

표 12-6 AC 특성 Parallel I/F READ ACCESS

항목	기호	조건		1611A		621A	PCD46	641A	단위
			Min	Max	Min	Max	Min	Max	
Address set up시간 대 RD↓	Tar	-	0	_	0	I	0	_	ns
Address hold 시간 대 RD↑	TRA	_	0	1	0	1	0	_	ns
RD 신호폭	T _{RR}	_	29	_	28	-	32	_	ns
CS set up 시간 대 RD↓	Tcr	_	0	-	0	ı	0	_	
CS hold 시간 대RD↑	Trc	_	0	_	1	_	0	_	
WRQ ON지연시간 대RD↓	T _{RT}	CL=40pF		29	ı	31	_	32	ns
WRQ ON시간	Ттт	_	ı	tclk X3	1	tclk X3	_	tclk X 3	ns
RD유지시간	TTR	_	0	_	0	_	0	_	ns
데이터출력지연시간 대RD ↓	Trd	C _L =40pF	_	29	-	31	-	32	ns
데이터출력선행시간	Tos	C _L =40pF	0	-	0	Ī	0	_	ns
데이터플로트지연시간 대 RD↑	Tdf	CL=40pF	_	22	-	22	-	22	ns
CS 신호 폭	Ттс	_	10	_	10	-	10	_	10

12-4-4. Parallel I/F Write Cycle

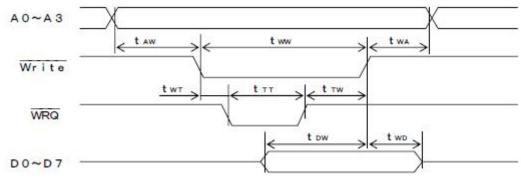


그림 12-4 AC특성 Parallel I/F write access 파형

표 12-7 AC 특성 Parallel I/F write access

항목	기호	조건		1611A		1621A	1	1641A	단위
			Min	Max	Min	Max	Min	Max	
Address set up시간 대 WR ↓	taw	_	0	_	0	_	0	_	ns
Address hold 시간 대 WR ↑	twa	_	0	_	0	_	0	_	ns
Write 신호폭	tww	_	16	_	17	_	16	_	ns
CS set up 시간 대 WR↓	Tcw	_	0	_	0	_	0	_	ns
CS hold 시간 대 WR↑	Twc	_	1	_	1	_	0	_	ns
WRQ ON 지연시간 대 WR↓	tw⊤	CL=40pF	-	13	-	17	-	16	ns
WRQ ON 시간	tтт	-	_	tclk X3	_	tolk X	_	tolk X	ns
WR유지시간	t⊤w	_	0	_	0	_	0	_	ns
CS 신호폭	Ттс	_	10	-	10	_	10	_	
데이터set up시간 대 WR↓	tow	_	13	_	14	_	13	_	ns
데이터유지시간 대WR↑	two	_	0	_	0	_	0	_	ns

12-4-5 Serial I/F access

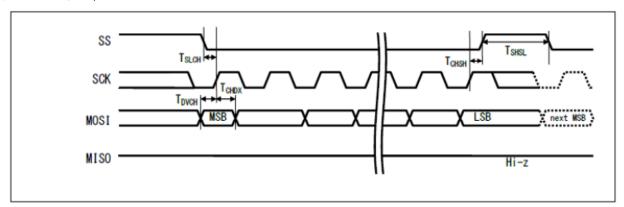


그림 12-5 Serial I/F write cycle / read cycle 선두 부분

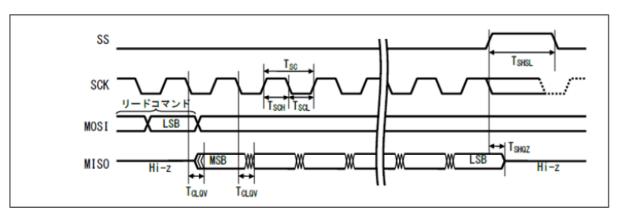


그림 12-6 Serial I/F read cycle 후반

표 12-8 AC 특성 Serial I/F access

항목	약호	조건	PCD46	PCD4611A		PCD4621A		PCD4641A	
			Min	Max	Min	Max	Min	Max	
Serial clock 주파수	Fsc	C _L =40pF	_	15	-	15	-	15	MHz
Serial clock 주기	Tsc	C _L =40pF	67	_	67	_	67	_	ns
Serial clock High pulse 폭	Тѕсн	_	20	-	20	-	20	-	ns
Serial clock Low pulse 폭	Tscl	-	30	_	30	_	30	_	ns
SS 엑티브 set up	Tslch	_	Tscl	_	Tscl	_	Tscl	_	ns
SS 디 셀렉트 시간	Tshsl	-	Tsc	_	Tsc	_	Tsc	_	ns
SS 엑티브 홀드 시간	Тснѕн	-	Tscl	-	Tscl	_	Tscl	_	ns
Data set up 시간	Тоусн	_	5	_	5	-	5	-	ns
Data hold 시간	Тснох	-	5	_	5	_	5	_	ns
출력 디세플루 시간	TsHQZ	C _L =40pF	_	16	-	8	-	12	ns
대 SS↑									
출력 지연 시간	TCLQV	C _L =40pF	_	17	_	17	_	21	ns

1 3. 외형수치 1 3 - 1. PCD4611A 외형수치도

단위 : mm

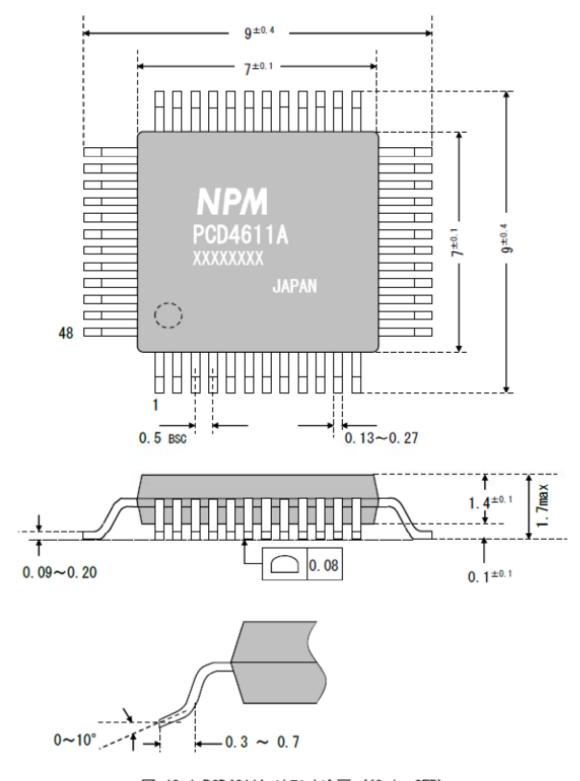


図 13-1 PCD4611A 外形寸法図 (48pin QFP)

단위 : mm

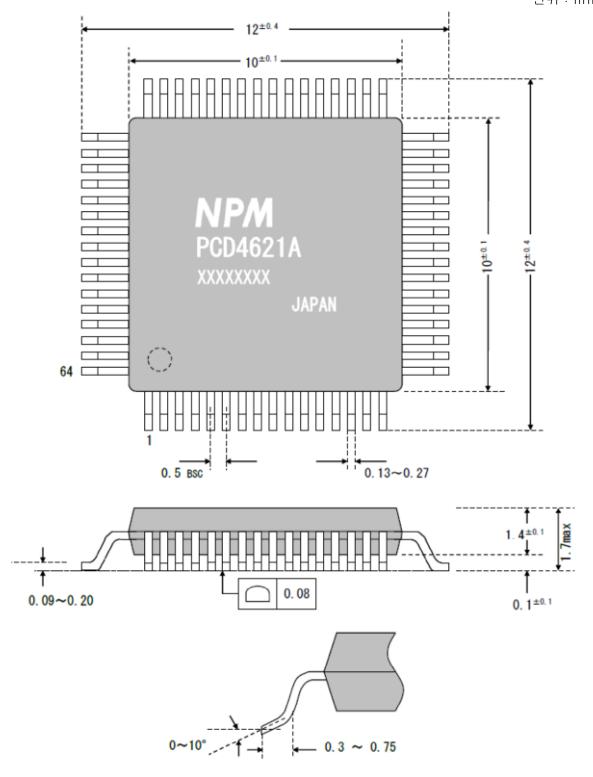
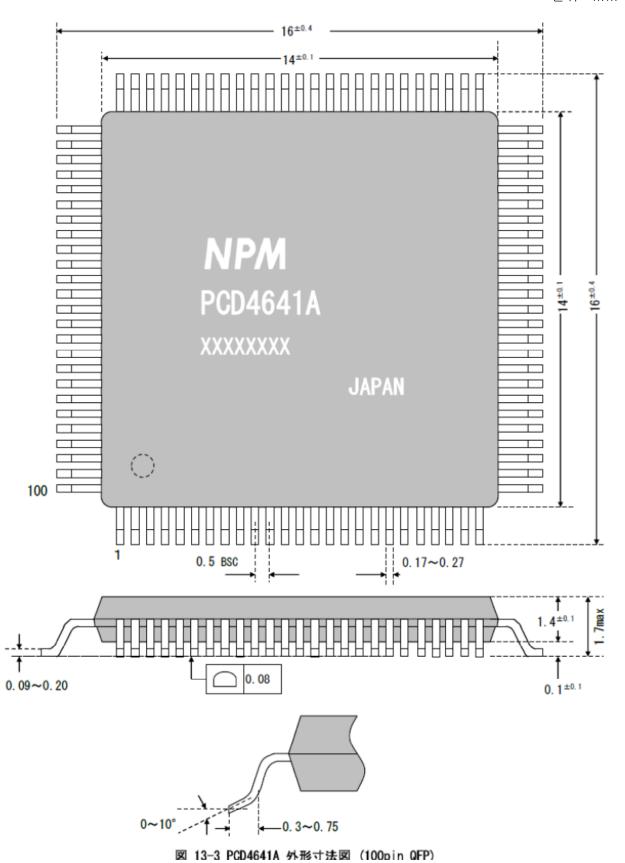



図 13-2 PCD4621A 外形寸法図 (64pin QFP)

단위: mm

- 85 -

1 4. 취급상의 주의사항

14-1. 하드 설계상의 주의

14-1-1. 기본 사항

- ① 순간적이여도 절대최대정격을 넘지말아 주세요.
- ② 주위로부터의 발열 영향을 피하고, LSI의 주변온도는 될 수 있으면 낮게 유지되도록 해주세요.
- ③ Latch업 현상이 발생하면 발열, 연기발생의 위험이 따르므로 이하의 점을 주의해 주세요.
 - •입력단자의 전압레벨은 추천동작 조건의 범위를 넘지 않도록 하여 주세요.
 - •전압투입시의 타이밍도 고려해 주세요.
 - •이상 노이즈가 LSI에 방해되지 않도록 해주세요.
 - ·미사용입력단자의 단위를 +3.3 V 또는 GND에 고정해 주세요.
 - 출력단락 하지 말아 주세요.
 - •고전압발생회로부터 유도, 정전기등으로부터 보호해 주세요.
- ④ 노이즈, Surge, 정전기등에 의한 과전압이 LSI에 방해되지 않도록 해주세요.
- ⑤ 모든 신호단자는, TTL인터페이스가 가능하게 되어 있어 3.3V -CMOS, TTL, LVTTL등과 접속할 수 있습니다. 다만 출력단자를 5V에 풀업하여도 3.3V이상은 되지 않습니다.

또한 입력단자에는 3.3V라인에 과전압대책용의 Diode가 포함되어 있지 않습니다. 반사나 링킹, 유도노이즈등에 의해 과전압이 인가되는 가능성이 있을 경우는, 과전압대책용 Diode의 주입을 추천합니다.

1 4 - 1-2. 프린트 기판 설계

- 동작을 안정 시키기 위해 3.3V전원 층과 GND층을 설계한 다층 판의 사용을 추천합니다.
- 본 LSI의 각 변의 근접에 0.1uF정도의 콘덴서를 3.3V-GND사이에 배치 하는 것을 추천 합니다.

14-1-3. 미 사용 단자 처리

- 미 사용의 입력 단자 (pull up 저항 내장)는 5k ~ 10kΩ에서 3.3V로 pull up하거나 3.3V에 접속 해 주세요.
- 미 사용의 입력 단자(pull up저항 없음)는 3.3V 또는 GND로 접속 바랍니다.
- 미 사용 쌍방향 단자 (pull up 저항 내장)는 $5k\sim 10k\Omega$ 에서 3.3V로 pull up 또는 GND로 pull down 해 주세요.
- 미 사용 출력 단자는 open (미 접속) 해 주세요.

14-1-4. 5V tolerant에 대하여

본 LSI의 전 신호 단자에는 5V tolerant 기능이 있습니다만 아래의 점에 주의해 주세요

- 출력 단자를 5V로 pull up해도 3.3V이상의 전압이 되지 않습니다. H level로서 3.3V 이상이 필요한 경우에는 외부에 L level 변환 회로가 필요 합니다.
- Pull up 저항내장의 입력 (입출력) 단자에 3.3V 이상의 전압을 입력한 경우, 내장 pull up 저항 (40k ~ 240kΩ)을 통하여 3.3V 전원으로 리크가 발생 하고 입력 전류가 증가 합니다.
- 입력 회로에는 단자와 3.3V 사이에 과 전압보호용 다이오드가 없습니다. 노이즈 등에 따라 절대 최대 정격 이상의 전압 입력의 가능성이 있는 경우에는 외부에서 보호 회로를 추가 해 주세요.

14-1-5 INT 신호 단자에 대하여

- INT단자는 OPEN DRAIN 단자 입니다.
- INT 단자를 사용 할 때에는 외부에 pull up 저항을 $(5k \sim 10k\Omega)$ 을 접속할 필요가 있습니다.
- 본 LSI를 복수 개 사용하는 경우에는 INT 단자끼리를 wired or 접속 할 수 있습니다.

14-1-6 범용 입 출력 포트 (P1~P4)를 범용 입력으로 사용 하는 경우

- PCD45x1과의 호환성 때문에 범용 입출력 단자는 초기 상태가 시퀜스 신호의 출력 단자로 되어 있습니다.
- 입력 포트로서 사용하는 경우에는 외부의 출력 회로와의 신호 쇼트 방지를 위해 series 저항을 반드시 삽입 해 주세요
- 출력 포트로서 사용하는 경우에는 series 저항은 필요 없습니다만 초기 상태는 시퀜스 신호의 출력 level 이기 때문에 주의 바랍니다.

- PCD46x1의 파손 방지에는 1kΩ 이상이 필요하고, 외부 회로의 파손 방지에는 외부 회로의 최대 출력 전류 이하가 되는 저항 값을 선정 해 주세요.

14-2 소프트설계상의 주의

- 인터럽트처리를 사용하고, 인터럽트 처리내에도 PCD46x1A에 Access하는 경우에는 주의가 필요합니다.

통상의 프로그램(비(非)인터럽트 프로그램)내의 PCD46xA1에 Access중간, 인터럽트 요구가 발생하여 인터럽트 프로그램을 기동하고, 인터럽트 프로그램내에 PCD46x1A에 Access하면, interrupt요구가 발생해서 interrupt program이 기동하고, interrupt program내에서 PCD46x1A에 ACCESS 하면 register 읽기 용 버퍼(RegRBF)나 register 쓰기 용 buffer (RegWBF)의 상태를 변화 시켜 버립니다.

이 상태에서 통상 프로그램에 복귀하면 레지스터 작성하기 값이 바뀌거나, 레지스터 불러내기 값을 틀려지는 경우가 있습니다.

따라서 통상 프로그램내의 PCD46x1A Access 처리중에는, 인터럽트 프로그램이 기동하지 않도록 주의 바랍니다.

- 멀티Task처리에서 여러수의 Task에서 PCD46x1A에 Access하는 경우도, Access 도중에서 Task가 바뀌지 않도록 해 주세요.
- 출력 mode command 0CM5,RENV.46MD는 상시 '1'을 써 넣어 주세요 또 Parallel I/F 때는 reset 해제 후에 반드시 5-2-7 준비를 실행 해 주세요.

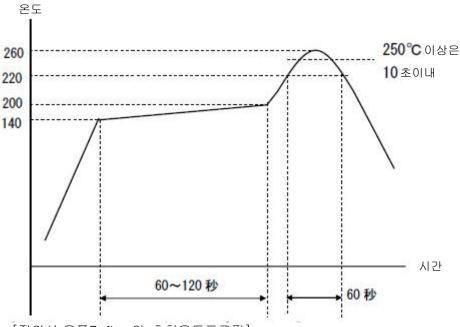
1 4 - 3. 기계계의 주의

14-3-1 End limit 검출 신호에 의한 정지에서 감속 정지를 선택 한 경우

① RENV.ELDS = 1 로 설정해서, E L 입력 L 레벨때의 처리를 감속정지에 설정하는 경우, E L 입력 L 레벨에서 감속을 개시하므로, E L 위치를 통과하여 정지합니다. 기계계의 충돌등 충분히 주의해 주세요.


1 4 - 4. 운송 • 보관상의 주의

- ① LSI 또는 포장은, 조심히 다루어 주세요. 던지거나, 떨어트리면 LSI를 파손시키는 원인이 됩니다.
- ② 젖을 위험이 있는 장소나 직사광선을 피해 보관해 주세요.
- ③ 유독가스(부식성가스 등) 이 발생하는 장소나, 먼지가 많은 곳에는 보관하지 마세요.


④ 보관에는 정전방지처리가 된 수납용기를 사용하고 LSI에 가중되지 않도록 주의 바랍니다.

14-5. 실제장비상의 주의

- ① 정전기등에 의한 파손을 방지하기 위해 다음과 같이 주의 바랍니다.
- •작업영역내에 설치된 장치, 치구등은 Earth를 해 주세요.
- •작업대표면은 도전성 매트등 (저항성분을 가진는 것) 으로 Earth 해 주세요. 작업표면대가 저저항의 금속의 경우, 대전한 LSI가 직접 접촉하면 급격하게 방전이 생겨 LSI를 파손시킬 우려가 있습니다.
- L S I 표면을 진공으로 픽업하는 경우는, 픽업의 선단에 도전성 고무등을 사용한 대전방지를 해 주세요. 그리고 LSI단자와의 접속부는 될 수 있으면 저저항분의 높은 것을 사용해 주세요.
- L S I 단자와 접속할 가능상의 있는 핀셋은 정전기방지용의 물건을 사용하여 될 수 있으면 금속 핀셋의 사용은 피해 주세요.
- L S I 실제 장비 기판은 간격을 넓혀 대전방지한 보드를 넣어 두는등으로 직접 겹치지 않도록 해 주세요. 마찰대전 및 방전이 되는 원인이 됩니다.
- ② 업자는 리스트스트랩을 착용하여, 1 MΩ정도의 저항을 통해 Earth해 주세요.
- ③ 납땜 인두는 인두 앞을 Earth하여, 저전압용의 것을 사용 바랍니다.
- ④ LSI또는 그 수용용기는, 고전계발생부 (CRT상등) 에 가까운곳에 놓지 마세요.
- ⑤ 전체가열은 납땜방법을 사용하는 경우에는, 1 2 5±5 ℃、2 0~3 6 시간의 고온배습처리를 부탁합니다. 그리고 고온배습처리는 2회까지만 해 주세요.
- ⑥ 열스트레스 경감을 위해 적외선 Reflow에 의한 Soldering포함 실제장비에 대해서는 원·중적외선에 의한 Reflow를 추천합니다. 그리고 Reflow 회수는 2회까지만 해 주세요.

• Package 표면 및 기반표면온도는 , 최대 2 6 0 ℃에서 2 5 0 ℃이상이 1 0 초이내에서 실시 바랍니다.

- ⑦ 온풍Reflow의 경우는 원적외선 Reflow의 경우와 동일합니다.
- ⑧ 납땜의 경우에는 납앞부분에 최대 3 5 0 ℃、단자에 5초이내, 2회이하로 실시해 주세요.

1 4 - 6. 기타 주의

- ① 나쁜환경(습도,부식성가스,쓰레기등) 에서 사용되는 경우에는, 방습코팅등의 사용도 검토 바랍니다.
- ② Package 의 수지재료는 난연성재료를 사용하고 있기 때문에, 부연성이 아니므로 타거나, 구워지면 연기발생, 발화하는 경우가 있습니다. 발화 그리고 가연성 가까이에서의 사용을 피해 주세요.
- ③ 본LSI는 민생기기 (사무기、통신기기、계측기기、가전등)에 사용되는 것으로 설계되어 있습니다. 높은 품질, 신뢰성이 요구되어, 고장이나 오동작으로 인해 직접적으로 사람에게 피해가 가거나, 위험을 가하는 장치 (원자력제어, 항공우주기, 교통신호, 연료제어, 각종안정장치등)에 사용될 때에는 주의 바랍니다.

부록

부록A. Serial I/F access 예

● Register 쓰기

5-3-2-2 register 쓰기의 예를 아래에 표시 합니다.

- 축 선택 code = "0000 1001b"의 경우 Device select 번호 = "00b"의 X축, U축의 각 register에 대하여 data를 씁니다.

MOSI 軸選択 コマン X 軸 X 軸 X 軸 U 軸 U 軸 [7:0] [15:8] [23:16] [7:0] [15:8] [23:16] MISO Hiz

- 축 선택 code = "0000 0110b"의 경우

Device select 번호 = "00b"의 Y축, Z축의 각 register에 대하여 data를 씁니다.

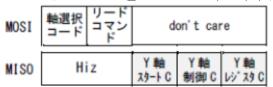
MOSI 軸選択 コマン Y軸 Y軸 Y軸 Z軸 Z軸 Z軸 [7:0] [15:8] [23:16] [7:0] | [15:8] [23:16] | Hiz

- 축 선택 code = "0000 1110b"의 경우

Device select 번호 = "00b"의 Y축, Z축,U축의 각 register에 대하여 data를 씁니다.

MOSI 軸選択 コマン Y軸 Y軸 Y軸 Z軸 Z軸 Z軸 U軸 U軸 U軸 [7:0] [15:8] [23:16] [7:0] Hiz

- 축 선택 code = "0000 1111b"의 경우 Device select 번호 = "00b"의 X축, Y축, Z축,U축의 각 register에 대하여 data를 씁니다.


MOSI	軸選択コード	コマンド	X 軸 [7:0]	X軸 [15:8]	X 軸 [23:16]	Y 軸 [7:0]	Y軸 [15:8]	Y軸 [23:16]	Z 軸 [7:0]	Z 軸 [15:8]	Z 軸 [23:16]	U軸 [7:0]	U軸 [15:8]	U軸 [23:16]	
MISO							Н	iz							

주: 지정 한 축 분 이상의 DATA를 쓴 경우에는 지정 이상의 쓰기 부분은 모두 X축의 쓰기 DATA로서 취급 됩니다.

Command 읽기

5-3-3-1 command 읽기의 예를 아래에 표시 합니다.

축 선택 code = "0001 0010b"의 경우 Device select 번호 = "00b"의 Y축의 register 에서 data를 읽기 합니다

- 축 선택 code = "0001 0101b"의 경우 Device select 번호 = "00b"의 X축,Z축의 register 에서 data를 읽기 합니다

- 축 선택 code = "0001 0111b"의 경우 Device select 번호 = "00b"의 X축.Y축.Z축의 register 에서 data를 읽기 합니다

MOSI	軸選択 リード				d	on't car	'e			
MISO	Hiz	X 軸 スタート C	X軸 制御 C	X 軸 レジスタ C	Y軸 スタートC	Y軸 制御C	Y軸 レジスタC	Z軸 スタートC	Z軸 制御C	Z軸 レジスタC

- 축 선택 code = "0001 1111b"의 경우 Device select 번호 = "00b"의 X축,Y축,Z축,U축의 register 에서 data를 읽기합니다

軸選択コード MOSI コマン don't care Υmi Z軸 Z軸 Z軸 U軸 U軸 U軸 Χ軸 Χ軸 Χ軸 Υimi Y軸 MISO Hiz 制御 C レジ スタ C スタート C 制御 C レジ スタ C スタート C 制御 C レジ スタ C スタート C 制御 C レジスタ C

주: 지정 한 축 분 이상의 DATA를 쓴 경우에는 지정 이상의 쓰기 부분에는 X축가 출력 됩니다.

● Status 읽기

5-3-3-2 status 읽기의 예를 아래에 표시 합니다.

- 축 선택 code = "0001 0010b"의 경우 Device select 번호 = "00b"의 Y축의 register 에서 data를 읽기 합니다

MOSI 軸選択 リート don't care

MISO Hiz Y軸 Y軸 RSTS_L RSTS_H

- 축 선택 code = "0001 0101b"의 경우 Device select 번호 = "00b"의 X축, Z축의 register 에서 data를 읽기 합니다

MOSI 軸選択 リード コマン don't care

MISO Hiz X軸 X軸 X軸 Z軸 Z軸 Z軸 MSTS_L RSTS_H MSTS RSTS_L RSTS_H

- 축 선택 code = "0001 0111b"의 경우 Device select 번호 = "00b"의 X축,Y축, Z축의 register 에서 data를 읽기 합니다

MOSI 軸選択 リード コマン don't care

MISO Hiz X軸 X軸 X軸 RSTS_L RSTS_H MSTS RSTS_L RSTS_H MSTS RSTS_L RSTS_H

- 축 선택 code = "0001 1111b"의 경우 Device select 번호 = "00b"의 X축,Y축, Z축,U축의 register 에서 data를 읽기합니다

MOSI 軸選択 リード パン don't care

MISO Hiz X軸 X軸 X軸 Y軸 Y軸 Y軸 Z軸 Z軸 Z軸 U軸 U軸 U軸 MSTS RSTS_L RSTS_H MSTS RSTS_L RSTS_H MSTS RSTS_L RSTS_H MSTS RSTS_L RSTS_H

주: 지정 한 축 분 이상의 DATA를 쓴 경우에는 지정 이상의 읽기 부분에는 X축의 DATA가 출력 됩니다.

• Register 읽기

5-3-3-2 register읽기의 예를 아래에 표시 합니다.

- 축 선택 code = "0001 0010b"의 경우 Device select 번호 = "00b"의 Y축의 register 에서 data를 읽기 합니다

MOSI 軸選択 リード don't care

MISO Hiz Y軸 Y軸 [7:0] [15:8] [23:16]

- 축 선택 code = "0001 0101b"의 경우 Device select 번호 = "00b"의 X축,Z축의 register 에서 data를 읽기 합니다

MOSI 軸選択 リード コマン don't care

MISO Hiz X軸 X軸 Z軸 Z軸 Z軸 [7:0] [15:8] [23:16]

- 축 선택 code = "0001 1111b"의 경우 Device select 번호 = "00b"의 X축,Y축,Z축의 register 에서 data를 읽기 합니다

軸選択コード MOSI コマン don't care Y軸 Z軸 Χ軸 Y軸 Z軸 Hiz MISO [7:0] [15:8] [23:16] [7:0] [15:8] [23:16] [7:0] [15:8] [23:16]

- 축 선택 code = "0001 0111b"의 경우 Device select 번호 = "00b"의 X축,Y축,Z축,U축의 register 에서 data를 읽기합니다

軸選択コード MOSI コマン don't care Υmi Z軸 Χ軸 Χ軸 Υimi Υimi Ζ軸 Ζ軸 U軸 U軸 MISO Hiz [15:8] [23:16] [7:0] [15:8] [23:16] [7:0] [15:8] [23:16]

주: 지정 한 축 분 이상의 DATA를 쓴 경우에는 지정 이상의 읽기 부분에는 X축의 DATA가 출력 됩니다.

● 포트 상태의 읽기

5-3-4 범용 포트상태 읽기의 예를 아래에 기재 합니다.

축 선택 code = "0001 1000b"의 경우 Device select 번호 = "00b"의 U축의 포트상태를 읽기 합니다.

MOSI 軸選択 don't care
MISO Hiz U軸 PORT

- 축 선택 code = "0001 0110b"의 경우 Device select 번호 = "00b"의 Y축,Z축의 포트상태를 읽기 합니다.

MOSI 軸選択 don't care
MISO Hiz Y軸 Z軸 PORT PORT

축 선택 code = "0001 1101b"의 경우
 Device select 번호 = "00b"의 X축,Z축,U축 의 포트상태를 읽기 합니다.

- 축 선택 code = "0001 1111b"의 경우 Device select 번호 = "00b"의 X축,Y축,Z축,U축 의 포트상태를 읽기 합니다.

주: 지정 한 축 분 이상의 DATA를 읽은 경우에는 지정 이상의 읽기 부분에는 X축의 DATA가 출력 됩니다.

Main status의 읽기

5-3-5 main status읽기의 예를 아래에 표시 합니다.

- 축 선택 code = "0011 1000b"의 경우 Device select 번호 = "00b"의 U축 의 status를 읽기 합니다.

- 축 선택 code = "0011 0110b"의 경우 Device select 번호 = "00b"의 Y축, Z축 의 status를 읽기 합니다.

- 축 선택 code = "0011 1101b"의 경우 Device select 번호 = "00b"의 X축,Z축,U축 의 status를 읽기 합니다.

주: 지정 한 축 분 이상의 DATA를 읽은 경우에는 지정 이상의 읽기 부분에는 X축의 DATA가 출력 됩니다.

축 선택 code = "0011 1111b"의 경우
 Device select 번호 = "00b"의 X축,Y축,Z축,U축 의 status를 읽기 합니다.

주: 지정 한 축 분 이상의 DATA를 읽은 경우에는 지정 이상의 읽기 부분에는 X축의 DATA가 출력 됩니다.

부록B. PCD45 x 1 와의 차이점 D1. 차이점 개요

- ① 제어소프트는, PCD4511,PCD4521,PCD4541와 상위 호환성이 있습니다. 상세는 (5-2 Parallel I/F access 방법)을 참조 바랍니다.
- ② 전류전압, Package, 단자배치는, PCD4511,PCD4521,PCD4541과 다르며, 탑재보드에 신규작성할 필요가 있습니다.
- ③ 3. 3 V 단일전원으로 하였습니다. (신호단자는 5 V Tolerant기능포함)
- ④ Package를 소형화 하였습니다.
- ⑤ 사용온도범위를 -40~+85℃로 하였습니다.
- ⑥ 출력펄스열의 형태로, [(+)펄스와(-)펄스(2펄스모드)]와[펄스와 방향신호(공통펄스모드) 선택 가능합니다.
- ⑦ 최고출력주파수를 2.4Mpps로 올렸습니다. (속도배율:300배일 때)
- ⑧ 슬로다운포인트 자동설정기능을 추가하였습니다.
- ⑨ 현재위치관리용에 24비트 **현재위치카운터(RCUN)**를 추가하였습니다.
- ⑩ CPU와의 I/F용에 웨이트제어용단자(WRQ)를 추가하였습니다.
- (ft) 시퀀스신호출력용의 PH1~PH4단자를, 범용입출력포트에 전용가능하게 되었습니다.
- ① 시퀀스신호사양을 설정하는 U/B, F/H입력단자의 상태 모니터기능을 추가하였습니다. 시퀀스신호출력이 불필요할 때는, 범용입력단자로써 사용가능합니다.
- ③ ORG, +EL, -EL, STP신호에 따라 정지방법을 선택할 수 있습니다.(즉시정지/감속정지)
- (4) CPU와의 I/F에 serial I/F를 추가 했습니다.
- ⑤ Serial I/F 때에 D0~D5를 공용 포트 (SP0 ~ SP5)로서 사용 가능 합니다.

B2. 사양비교표

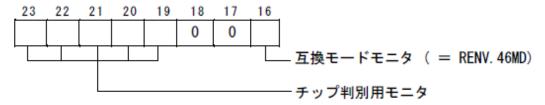
색칠된 부분이 다른부분입니다.

(설전 구군이 나는구군합니다. 항목	PCD46x1A 규격	PCD45x1 규격
전원	3.0~3.6 V	4.5~5.5 V
기준 Clock	표준 4.9152MHz(Max.10MHz)	같음
CPU I/F	Parallel I/F: 8bit	Parallel I/F: 8bit
	Serial I/F : 동기 식 4선 serial	
위치결정 펄스 수 설정범위	0~16,777,215펄스	같음
속도 설정 스텝 수	1~8,191스텝	같음
추천 속도 배율 설정 범위	1~300배(기준Clock:4.9152MHz일 때)	1~50배
	1 ЫН Л 1 ~ 8,191 pps	
	2 HH Л 2 ~ 16,382 pps	
	3 0 0 HH Al 300 ~2,457,300 pps	
속도 설정 레지스터 수	FL, FH속도용의 2종류	같음
슬로 다운 포인트 설정 범위	0~16,777,215 (24비트)	0~65,535 (16비트)
슬로 다운 포인트 설정 방법	수동설정 또는 자동설정	수동설정만
가감속 비율 설정 범위	1~65,535 (16日三)	2~1,023 (10비트)
현재 위치 카운터	24비트 UP/DOWN카운터 1회로/축	없음
대표적인 동작 예	연속동작	같음
	Preset동작 (위치 결정 동작)	
	원점 복귀 동작	
	타이머 동작	
대표적인 기능 예	직선 가감속/S자 가감속	겸용 포트기능 공용 포트
	즉시정시/감속정지	이외는같음
	속도변경 의료Otant/이묘Otant 기노	
	외부Start/외부Stop기능	
	Idling 펄스 출력기능 2상 스텝핑 모터용 여자(励磁) 시퀀스	
	2명 스립링 포니용 어자(励慨) 시전으 출력	
	ㄹㄱ 범용입출력 포트 4본/축 (시퀜스출력	
	마용탑을 기보고 주는/기 (세분드을 기 과 겸용)	
	공용 포트 6개(serial I/F때 만 사용 가	
	능)	
사용 주의 온도	-40~+85℃	0~+85℃
보존 온도	-65~+150℃	-40~+125℃
패키지	PCD4611A: 48pin QFP	PCD4511: 44pin QFP
	(Mold 치수: 7.0× 7.0 mm)	(10.0×10.0 mm)
	PCD4621A: 64pin QFP	PCD4521: 64pin QFP
	(Mold 치수 : 10.0×10.0 mm)	(20.0×14.0 mm)
	PCD4641A:100pin QFP	PCD4541:100pin QFP
	(Mold 치수 : 14.0×14.0 mm)	(20.0×14.0 mm)
Chip 구성	C-MOS	같음

B3. 내부 레지스터의 명칭변경

매뉴얼에 기재를, 레지스터번호방식에서 용도약칭방식으로 변경되었습니다.

레지스터명칭		71 느
PCD46x1A	PCD45x1	기능
RMV레지스터	RO레지스터	프리세트량설정/잔펄스확인
RFL레지스터	R1레지스터	FL속도설정
RFH레지스터	R2레지스터	FH속도설정
RUD레지스터	R3레지스터	가감속레이트설정
RMG레지스터	R4레지스터	속도배율설정
RDP레지스터	R5레지스터	슬로다운포인트설정
RIDL레지스터	R6레지스터	공전펄스설정
RENV레지스터	R7레지스터	환경데이터설정


RCUN레지스터	-	현재위치카운터
RSTS레지스터	-	확장스테이터스모니터
RIOP레지스터	_	범용포트설정
RSP0레지스터		공용 포트 출력 설정/모니터
RSPM레지스터		공용 포트 설정

B4. 레지스터

비트길이의 확장과, 레지스터를 추가하였습니다.

ארדו א כו	1110	PCD46x1A		PCD45x1	
레지스터	내용	비트길이	설정 범위	비트 길이	설정 범위
RUD	가감속레이트설정	16	2~65,535	10	2~1,023
RDP	슬로다운포인트설정	24	0~16,777,215	16	0~65,535
RENV	환경데이터설정	16	0000h~FFFFh	1	0~1
RICD	제품정보 코드 ※4	8	00h ~ 40h	8	00h ~ C9h
RCUN	현재위치카운터	24	0~16,777,215 또는 -8,388,608~ +8,388,607	-	-
RIOP	범용포트설정	6	0~3Fh *2	-	-
RSP0	공용포트 출력 설정/모 니터	6	0 ~ 3Fh **3	_	_
PSPM	공용포트 설정	6	0 ~ 3Fh	_	

- ※1. PCD45x1시리즈에서는 RENV레지스터는 PCD4541에서만 존재합니다.
- ※2. PCD45x1 호환 mode, PCD4500 호환 MODE 때는 access 할 수 없습니다.
- ※3. Serial I/F 때만 사용 가능 합니다.
- ※4. 제품 정보 CODE의 PCD45x1과 PCD46x1A와의 비교

00010b: PCD4511 10011b: PCD4611A 00100b: PCD4521 10101b: PCD4621A 01000b: PCD4541 11001b: PCD4641A

B5. 전기적특성

절대최대정격

항목	부호	PCD46x1A	PCD45x1	단위
전원전압	V dd	-0.3 ~ +4.0	−0.3 ~ +7.0	V
입력전압	VIN	−0.3 ~ +7.0	$-0.3 \sim V_{DD} + 0.3$	V
입력전류	Lin		±10	mA
보전온도	Tstg	−65 ~ +150	-40 ~ +125	$^{\circ}\!\mathbb{C}$

추천동작조건

항목	부호	PCD46x1	PCD45x1	단위
전원전압	V dd	+3.0 ~ +3.6	+4.5 ~ +5.5	V
주위온도	Ta	−40 ~ +85	0 ~ +85	$^{\circ}$ C
저레벨입력전압.1	VIL	-0.3 ~ +0.8	0 ~ +0.8	\/
.2		-0.3 ~ +0.8	0 ~ +1.0	V
고레벨입력전압.1	VIH	+2.0 ~ +5.8	+2.2 ~ VDD	\/
.2		+2.0 ~ +5.8	+4.0 ~ VDD	V

- 1. CLK이외 입력
- 2. CLK입력

DC특성

항목	약호	조건	PCD46x1A	PCD45x1	단위
소비전류 ① 1축		1	6	17 max	
2축	I DD	1	10	34 max	m A
4축		1)	20	65 max	
출력 리크 전류	Loz		-1 ~ +1	-10 ~ +10	μА
입력 용랑	CIN		10 max	7 max	рF
저레벨 입력 전류②	1.0	\/CND	-1	-10	^
3	I IL	V IN=GND	-90	-200	μА
고레벨 입력 전류④	Тін	A IM= A DD	+1	+10	μА
저레벨 입력 전류⑤			6 max	8 max	
6	I OL		6 max	16 max	m A
7			6 max	16 max	
고레벨 입력 전류⑤	Гон		-6 max	-8 max	m A
(6)	TOH		-6 max	-16 max	IIIA
저레벨 입력 전압	V OL	I oL=max	0.4 max	0.4 max	V
그게베 이걸 저야	V/ 011	I OH=-1uA	VDD−0.4 min	V DD−0.05 min	V
고레벨 입력 전압	Vон	I OH=max	VDD-0.4 min	2.4 min	\ \ \
내부풀업 저항	Rυ		40 ~ 240	25 ~ 500	ΚΩ

- ① 기분클록10MHz、4,999,390pps 출력, 무부하일 때
- ② D0/SP0~D7/M0SI, A0/DS0~A3, RD, WR, CS/SS, CLK
- 3 ORG, +EL, -EL, +SD, STA, STP, U/B, F/H, RST
- ④ 2또는 3의 단자
- ⑤ D 0 /SP0~D 7 /M0SI 또는, PCD4x21,PCD4x41의 O T S, B S Y, + P O/PLS, P O/DIR, PH1/P1 ~PH4/P4
- ⑥ PCD4x11(1축)의 OTS, BSY, +PO/PLS, -PO/DIR,PH1/P1~PH4/P4
- 7 INT

부록 C. 내부 MONITOR (Parallel I/F 때)

PCD46x1 mode

RCM3 ~ 0	ADDRESS					
	A1 = 1, A0 = 1	A1 = 1 , $A0 = 0$	A1 = 0, A0 = 1	A1 = 0, A0 = 0		
0000b	RMV 상위 DATA	RMV 중위 DATA	RMV 하위 DATA	Main status		
0001b	START MODE	RFL 상위 DATA	RFL 하위 DATA	Main status		
	COMMAND					
0010b	제어 MODE	RFH 상위 DATA	RFH 하위 DATA	Main status		
	COMMAND					
0011b	REGISTER	RUD 상위 DATA	RUD 하위 DATA	Main status		
	SELECT					
	COMMAND					
0100b	출력 MODE	RMG 상위 DATA	RMG 하위 DATA	Main status		
	COMMAND					
0101b	RDP 상위 DATA	RDP 중위 DATA	RDP 하위 DATA	Main status		
0110b	RSPD 상위	RSPD 하위	RIDL DATA	Main status		
	DATA	DATA				
0111b	RIDC DATA	RENV 상위	RENG하위 DATA	Main status		
		DATA				
1000b	RCUN상위DATA	RCUN 중위	RCUN하위 DATA	Main status		
		DATA				
1001b	항상 00h	RSTS 상위	RSTS하위 DATA	Main status		
		DATA				
1010b	항상 00h	항상 00h	RIOP DATA	Main status		
1011b	항상 00h	항상 00h	항상 00h ,※ 1	Main status		
1100b	항상 00h	항상 00h	항상 00h ※ 1	Main status		
1101b ~ 1111b	항상 00h	항상 00h	항상 00h	Main status		

^{※ 1:} Parallel I/F 때이기에 표기와 같이 됩니다.

PCD45x1 호환 mode

PCD45XT 호환 IIIode						
RCM2 ~ 0	ADDRESS					
	A1 = 1, A0 = 1	A1 = 1, $A0 = 0$	A1 = 0, A0 = 1	A1 = 0, A0 = 0		
000b	RMV 상위 DATA	RMV 중위 DATA	RMV 하위 DATA	Main status		
001b	START MODE	RFL 상위 DATA	RFL 하위 DATA	Main status		
	COMMAND					
010b	제어 MODE	RFH 상위 DATA	RFH 하위 DATA	Main status		
	COMMAND					
011b	REGISTER	RUD 상위 DATA	RUD 하위 DATA	Main status		
	SELECT					
	COMMAND					
100b	출력 MODE	RMG 상위 DATA	RMG 하위 DATA	Main status		
	COMMAND					
101b	RENV 하위	RDP 상위 DATA	RDP 하위 DATA	Main status		
	DATA					
110b	RSPD 상위	RSPD 하위	RIDL DATA	Main status		
	DATA	DATA				
111b	RIDC DATA	RSTS 상위	RSTS하위 DATA	Main status		
		DATA				

PCD4500 호환 mode

RCM2 ~ 0	ADDRESS			
	A1 = 1, A0 = 1	A1 = 1 , $A0 = 0$	A1 = 0, A0 = 1	A1 = 0, A0 = 0
000b	RMV 상위 DATA	RMV 중위 DATA	RMV 하위 DATA	Main status
001b ~ 111b	항상 00h	항상 00h	항상 00h	Main status