Pulse Control LSI With Sequencing Function for Stepper Motors PCD4600 Series

PCD4611 PCD4621 PCD4641

User's Manual

[Preface]

Thank you for considering our pulse control LSI, the "PCD4600 series." Before using the product, read this manual to become familiar with the product. Please note that the section "Handling precautions" which includes details about mounting this LSI, can be found at the end of this manual.

Са	utio	nsl

- (1) Copying all or any part of this manual without written approval is prohibited.
- (2) The specifications of this LSI may be changed to improve performance or quality without prior notice.
- (3) Although this manual was produced with the utmost care, if you find any points that are unclear, wrong, or have inadequate descriptions, please let us know.
- (4) We are not responsible for any results that occur from using this LSI, regardless of item(3) above.
- (5) If you use it in any device that may require high quality and reliability, or where faults or malfunctions may directly affect human survival or injure humans, such as in nuclear power control devices, aviation devices or spacecraft, traffic signals, fire control, or various types of safety devices, we will not be liable for any problem that occurs, even if it was directly caused by the LSI. Customers must provide their own safety measures to ensure appropriate performance in all circumstances.

Descriptions of indicators that are used in this manual

- 1 When describing the bits in registers, "n" refers to a bit position. "0" refers to a bit position and means that it is prohibited to write any other than "0" and this bit will always return "0" when it is read.
 - A specified bit of a specified register is referred to as (resister name).(bit name). (ex. RMD.MSDE)
- 2 Unless otherwise described, time description affected by the reference clock frequency discussed in this manual is in the case of CLK=4.9152 MHz.
- 3 The "x" "y" "z" and "u" of terminal names refer to X axis, Y axis, Z axis and U axis, respectively.
- 4 Terminals with a bar above the name (ex. RST) use negative logic. Example: TOUT means that TOUT terminal uses negative logic.

1. OUTLINE AND FEATURES	1
1-1. Outline	1
1-2. Feature	1
2. SPECIFICATIONS	2
3. TERMINAL ASSIGNMENT DIAGRAMS	
3-1. Terminal assignment diagram of PCD4611 (Top View)	3
3-2. Terminal assignment diagram of PCD4621 (Top View)	4 5
4 TERMINAL FUNCTION DESCRIPTION	0 6
4-1. A list of terminals	6
4-2. Functions of terminals	7
5. BLOCK DIAGRAM	11
6. CPU INTERFACE	12
6-1. Precaution for designing hardware	12
6-1-1. Prited board design	12
6-1-2. Unused terminal	12
6-1-3. 5 V tolerant	12
6-1-4. General-purpose input / output ports (ø1 / P1 to ø4 / P4)	12
6-1-5. Interrupt processing	12
6-2. Examples of CPU interfaces	13
6-3. Address map	14
6-3-1. Address map of PCD4611	14
6-3-2. Address map of PCD4621	14
6-3-3. Address map of PCD4641	
6-4. Description of map details	
6-4-1. Command buffer (COMBF)	
6-4-2. Main status (MSTS)	15
6-4-3. Register WR buffer (RegWBF)	15
6-4-4. Register RD buffer (RegRBF)	
6-5. Procedure to write to / read from internal registers	
6-5-1. Procedure to write	
6-5-2. Procedure to read	
7. COMMAND	
7-1. Start mode command	
7-3. Register select command	
7-4. Output modecommand	20
8. REGISTER ACCESS IN COMPATIBLE MODE	21
8-1. List of register	
8-2. Register in the PCD46x1 mode	
8-2-1. RMV register	
8-2-2. RFL register	
8-2-4. KUD register	24
8-2-5. RMG register	24
8-2-6. RDP register	25
8-2-7. RSPD monitor, RIDLregister	26
8-2-8.RIDC monitor, RENV register	26
8-2-9. RCUN register	28

8-2-10. RSTS monitor	29
8-2-11. RIOP register	29
8-3. Register in PCD45x1 mode	31
8-3-1. RMV register	31
8-3-2. RFL register	32
8-3-3. RFH register	32
8-3-4 RUD register	32
8-3-5 RMG register	32
9.2.6. DENI/ manitar DDD register	20
0-3-5. RENV Infolition, RDP register	
8-3-7. RSPD monitor, RIDL register	33
8-3-8. RENV register, RIDC monitor, RSTS monitor	33
8-4. Registers in PCD4500 mode	34
8-4-1. RMV register	34
8-4-2. RSTS monitor	34
9. OPERATION MODE	35
9-1. Continuous mode	35
9-2. Origin return mode	36
9-4. Timer mode	39 40
10 SPEED PATTERNS	
10-1 Speed natterns	
10-2. Speet pattern settings	
10-3. Setting example of acceleration / deceleration pattern	44
10-4. Changing speed patterns in operation	45
11. FUNCTION DESCRIPTION	47
11-1 Reset	47
11-2. Idling pulse output	47
11-3. External start control	48
11-4. External stop control	48
11-6. Excitation sequence output	40 19
11-7. External mechanical input control	
11-8. Interrupt signal (INT) output	51
11-9. General-purpose port	52
11-9-1. Terminal OTS	52
11-9-2. Terminals Ū/B, F/H	52
11-9-3. Terminals ø1 / P1. ø2 / P2. ø3 / P3. ø4 / P4	53
12. ELECTRICAL CHARACTERISTICS	
12-1. Absolute maximum rating	54
12-2. Recommended operating conditions	54
12-3. DC characteristics (in recommended operating conditions)	54
12-4. AC characteristics	55
12-4-1. Reference clock	55
12-4-2. Reset cycle	55
12-4-3. Read cycle	55
12-4-4. Write cvcle	56
12-5. Operation timing	56
12-5-1. Accelerating / decelerating operation timing (Positioning operation)	56
12-5-2. Start timing	
12-5-3 Ston timing	57
12-5-4 Pulso output sequence output timing	
12-5-4. Fuise output, sequence output limity	
12-5-5. General-purpose port output timing	58
	F 0

DA70133-1/0E

13-1. External dimensions of PCD4611 (48 pin QFP)	59
13-2. External dimensions of PCD4621 (64 pin QFP)	60
13-3. External dimensions of PCD4641 (100 pin QFP)	61
14. HANDLING PRECAUTIONS	62
14-1. Hardware design precautions	62
14-2. Software design precautions	62
14-3. Mechanical proecaution	62
14-4. Precautions for transporting and storing LSIs	63
14-5. Precautions for mounting	63
14-6. Other precautions	64
APPENDIX	65
Appendix A. Command list	65
Appendix B. Register list	66
Appendix C. Status list	
Appendix D. Differences from PCD45x1	68

1. Outline and features

1-1. Outline

PCD4611/4621/4641 are pulse control LSIs with phase sequence control for 2-phase stepper motor. Using these LSIs and ICs for stepping drive allows you to construct stepper motor control system. Inputting data and commands from CPU allows you to control speed and positioning, etc. Using output pulse signal drive can control motor drive of pulse train input type.

1-2. Feature

- 3.3V single power source (Input and output terminals have 5V tolerance feature.)
- Maximum output frequency
 - 4.91 Mpps (Reference clock : 9.8304 MHz (Maximum frequency), speed magnification : 300x)
 - 2.46 Mpps (Reference clock : 4.9152 MHz (Standard frequency), speed magnification : 300x)
- Wait control is added for interface with CPU.
- Excitation sequencing output for 2-phase stepper motor.
- Four terminals for sequence output can be used as general-purpose I/O terminals.
- Pulse train output (CW and CCW pulse, pulse and direction signal.)
- Linear and S-curve acceleration / deceleration control.
- External start / stop control
- Positioning operation / origin return operation/ continuous operation / timer operation
- Idling pulse output
- 24-bit current position counter
- Automatic setting for a ramping-down point.
- Selection of stop method by ORG, +EL, -EL, STP signals. (Immediate stop / deceleration stop)
- Available in single axis (PCD4611), 2-axis (PCD4621), and 4-axis (PCD4641)
- Control software is upward compatible with PCD4511 / PCD4521 / PCD4541.

2. Specifications

Item	Standard
Power source	3.0 to 3.6 V
Reference clock	4.9152 MHz standard (10 MHz max)
Number of control axes	PCD4611 : one
	PCD4621 : two
	PCD4641 : four
Positioning control range	0 to 16,777,215 pulses (24 bits)
Speed setting step range	1 to 8,191 steps (13 bits)
Recommended speed magnification	1x to 300x (when using reference clock :4.9152 MHz)
range	When 1x, 1 to 8,191 pps
	When 2x, 2 to 16,382 pps
	When 5x, 5 to 40,955 pps
	When 10x, 10 to 81,910 pps
	When 20x, 20 to 163,820 pps
	When 50x, 50 to 409,550 pps
	When 100x, 100 to 819,100 pps
	When 200x, 200 to 1,638,200 pps
	When 300x, 300 to 2,457,300 pps
Number of registers for setting the	I wo per axis (FL and FH)
speed	
Ramping-down point setting range	0 to 16,777,215 (24 bit per axis)
Ramping-down point setting method	Manual setting or automatic setting
Acceleration / deceleration rate	Linear and S-curve acceleration / deceleration
setting range	
Acceleration / deceleration rate	2 to 65,535 (16 bit per axis)
setting range	
Current position counter	24 bit-UP / DOWN counter one circuit / axis
Mechanical sensor input	The following signals are input per axis
	ORG (Origin)
	<u>+EL</u> , <u>-EL (End limit)</u>
	+SD,-SD(Ramping-down)
Typical operations	- Continuous operation
	- Positioning operation
	 Origin return operation
	- Timer operation
Typical functions	 Immediate stop and decelerating stop
	- Speed change
	- External start and external stop function
	- Idling pulse output function
	- Excitation sequencing output for 2-phase stepper motors
	- 4 bit general purpose input and output ports (They also can be used
	as sequence output)
Ambient expecting terms and	
Storage temperature	
Storage temperature	
Раскаде	PCD4611: 48 pin QFP (Mold section :7.0× 7.0 mm) DOD 4001: 04 six QFP (Mold section :7.0× 7.0 mm)
	PCD4621: 64 pin QFP (Mold section :10.0×10.0 mm)
	PCD4641:100 pin QFP (Mold section :14.0×14.0 mm)
Chip design	C-MOS

3. Terminal assignment diagrams

3-1. Terminal assignment diagram of PCD4611 (Top View)

3-3. Terminal assignment diagram of PCD4641 (Top View)

STP∪

ORGU -

+EL∪

-EL∪

+SD∪

-SDU -

GND ·

BSY∪ ◄

Ø 1∪/P1∪ ←

Ø 2∪/P2∪ →

Ø 3∪/P3∪ ←

Ø 4∪/P4∪ ←►

OTSU 🗲

VDD -

CLK -

GND

GND

GND

GND

RST

CS

RD

WR

+POU/PLSU 🗲

-POU/DIRU -

-

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

1

Î

A0 A1

2 3 4 5 6

A2 . A3

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

\$

* * * * * * * *

-SDX

+SDX

-ELX

+ELX

ORGX

STPX

STAX

- F/Hx

- Ū/B×

- GND

35

34

33

32

31

30

29

28

27

26

OTSX

Ø 3X/P3X Ø 4X/P4X +POX/PLSX -POX/DIRX

4. Terminal function description

4-1. A list of terminals

	Terminal number								5V		
PCD4611	PCD	4621		PCD	4641		Terminal name	I/O	Logic	Description	tole
	Х	Y	Х	Y	Ζ	U					-rant
36	6	0		9	2		CLK	I	-	Reference clock	0
41	4	4		9	7		RST	1%	Negative	Reset signal	0
42	ę	5		9	8		ĊŚ	I	Negative	Chip select signal	0
43	6	5		1(00		WR	I	Negative	Write signal	0
44	7	7		9	9		RD	I	Negative	Read signal	0
47	8	3			1		A0	I	Positive	Address bus 0 (LSB)	0
46	ę	9		2	2		A1	I	Positive	Address bus 1	0
-	1	0		3	3		A2	I	Positive	Address bus 2	0
-		-		2	4		A3		Positive	Address bus 3	0
2	1	2		ç	9		D0	I/O	Positive	Data bus 0 (LSB)	0
3	1	3		1	0		D1	I/O	Positive	Data bus 1	0
4	1	4		1	1		D2	I/O	Positive	Data bus 2	0
5	1	5		1	2		D3	I/O	Positive	Data bus 3	0
6	1	7		1	3		D4	I/O	Positive	Data bus 4	0
7	1	8		1	4		D5	I/O	Positive	Data bus 5	0
8	1	9		1	5		D6	I/O	Positive	Data bus 6	0
9	2	0		16		D7	I/O	Positive	Data bus 7	0	
38		1		6		ĪNT	0*	Negative	Interrupt request signal	0	
39		2		7		WRQ	0	Negative	Wait request signal	0	
07	~~	50	07	20	~	70	Π/D	1.0/	-	Select excitation method	0
27	22	50	27	30	64	73	0/8	1%		(L: unipolar / H: bipolar)	0
20	22	E 4	20	07	05	74	〒/山	1.0/	-	Select excitation sequence	0
28	23	51	28	31	65	74	F/H	1%		(L:2-2 phase / H:1-2 phase)	0
25	24	52	29	38	66	75	STA	۱%	Negative	External start signal	0
26	25	53	30	39	67	76	STP	۱%	Negative	External stop signal	0
18	26	54	31	40	68	77	ORG	1%	Negative	Origin position switch signal	0
17	27	55	32	41	69	78	+EL	1%	Negative	(+) end limit switch signal	0
16	28	56	33	42	70	79		1%	Negative	(-) end limit switch signal	0
15	29	57	34	43	71	80	+ <u>SD</u>	1%	Negative	(+) deceleration switch signal	0
14	30	58	35	40	72	81		1%	Negative	(-) deceleration switch signal	0
17	50	00	00		12	01	-00	1 /0	Positivo	1st phase excitation signal	
30	32	41	19	47	56	84	ø1/P1	I/O%	r Ositive		0
									Positive	2nd phase excitation signal	
31	33	42	20	48	57	85	ø2/P2	I/O%	1 OSILIVE		0
									Desitive		
32	34	43	21	49	58	86	ø3/P3	I/O%	Positive	3rd phase excitation signal	0
										/ general-purpose I/O 3	
33	35	44	22	50	59	87	ø4/P4	I/O%	Positive	4th phase excitation signal	0
										/ general-purpose I/O 4	
21	36	45	23	51	60	88	+PO/PLS	0	Negative #	(+) pulse / common pulse signal	0

Terminal number											F \/
PCD461	PCE	0462		PCD	4641		Terminal name	I/O	Logic	Description	tole
1	X	1 Y	X	Y	Z	U			Ū		-rant
20	37	46	24	52	61	89	-PO/DIR	0	Negative #	(-) pulse / direction signal	0
22	38	47	18	46	55	83	BSY	0	Negative	Running signal	0
34	39	48	25	53	62	90	OTS	0	Negative	General-purpose output signal	0
1,19, 29,37, 45	3,2 40	21, ,59	5,	5,17,45,63,91		VDD			Power input +3.3 V(3.0 to 3.6 V) input		
10,11, 12,13, 24,35, 40,48	11, ⁻ 49,0 	16,3 1 61,6 2 ,64	ę	8,26,54,82, 93,94,95,96		GND			Power GND		
23			(Open)	0		Output terminal for delivery inspection (always open)	х				

Notes:

- '%' in the I/O column means that a pull-up register is integrated and '*' means open drain.

- '#' in the logic column is a terminal that the logic is changeable and the logic described here is a default.

4-2. Functions of terminals

4-2-1. CLK

This is an input terminal of the reference clock. Ordinary, clock from 4.9152 MHz crystal oscillator (3.3V) is input. The accuracy of reference clock affects accuracy of output pulse. It also affects start timing, input sensitivity of $\overline{+EL}$, $\overline{-EL}$, \overline{ORG} , \overline{STA} , \overline{STP} signals and timing of writing and reading.

<u>4-2-2. RST</u>

This is a input terminal for a reset signal.

By making this terminal LOW level and inputting 3 or more clocks of reference clock, the internal circuit of PCD46x1 is reset. About the default setting after reset, see 11-1. Reset

<u>4-2-3. CS</u>

This is an input terminal for a chip select signal.

By making this terminal LOW level, a RD signal and a WR signal are enabled and reading and writing operation from CPU becomes available.

<u>4-2-4. WR</u>

This is an input terminal for a write signal.

When \overline{CS} terminal is LOW level, the status of data bus (D0 to D7) is written to the internal at the timing when this signal changes from LOW level to HIGH level.

<u>4-2-5. RD</u>

This is a input terminal for a read signal.

By making this terminal LOW level when the \overline{CS} terminal is LOW level, the contents of the main status and the register is output to the data bus (D0 to D7).

4-2-6. A0, A1, A2, A3

These are input terminals of address signals.

The LSI uses A0 and A1 terminals to assign access address to the upper, middle and lower of the Command buffer (COMBF) and the Register buffer (RegWBF). Normally, the LSI connects to the lowest bit of CPU address bus. On the PCD4621 and 4641, terminals A2 and A3 are used to select axes to control. The A0 terminal is the lowest bit.

4-2-7. D0 to D7

These are input and output terminals for the tri-state data bus.

The D0 terminal is the lower bit (LSB) and the D7 terminal is the upper bit (MSB).

<u>4-2-8. INT</u>

This is an output terminal for sending an interrupt request signal to a CPU.

This terminal will go LOW when an interrupt occurs. With reset by a command of interrupt condition setting, this terminal returns to HIGH level. This terminal can also be masked.

By setting the Start mode command, the LSI can output an \overline{INT} signal when a motor stops. Using this terminal, you can call for an interrupt when positioning operation is complete, or when operation is stopped by an \overline{ORG} signal, $\overline{+EL}$ or $\overline{-EL}$ signal, or \overline{STP} signal. An interrupt can also be requested by an immediates stop command or a deceleration stop command.

Using the setting of Register select command, an INT request signal can be output when a motor starts deceleration by a ramping-down point setting or when a motor starts by an external signal.

When using several PCD4611/PCD4621/PCD4641s, each INT terminal of each LSI can be connected in a wired OR configuraton. Use an external pull up resistor (5 to 10 K ohms) to stabilize HIGH level though a pull-up resistor is built in for prevention from static electricity.

<u>4-2-9. WRQ</u>

This terminal outputs a wait request signal for CPU.

While this terminal is LOW level, extend access cycle of CPU.

When \overline{WRQ} is not used, ensure access interval by software.

For the detail about access interval, see 6-5. Procedure to write to/read from internal registers.

<u>4-2-10. Ū/B</u>

This is a terminal for selecting excitation method.

Select unipolar excitation sequencing with a LOW or bipolar excitation sequencing with a HIGH on this terminal. The setting of this terminal is latched at the cancel of reset. Therefore, input a \overrightarrow{RST} signal after setting change. About difference of sequence by excitation method, see 11-6. Excitation sequence output.

When excitation sequence output is not used, this terminal can be used as a general-purpose input terminal.

<u>4-2-11. F/H</u>

Terminal for selecting excitation sequence.

2-2 phase and 1-2 phase are typical excitation sequences for 2-phase stepper motors. Select sequence using this terminal.

Select 2-2 phase excitation with a LOW and 1-2 phase excitation sequencing with a HIGH. For details about the sequence for reading this terminal, see "11-6. Excitation sequence output."

When excitation sequence output is not used, this terminal can be used as a general-purpose input terminal.

4-2-12. STA

This is an input terminal for an external start signal.

When a hold start command is entered using a Start mode command, the motor starts on the falling edge of this STA. A signal shorter than 4 cycles of the reference clock is not accepted because of a noise filter.

4-2-13. STP

This is an input terminal for a forced stop signal.

When the <u>STP</u> signal goes LOW, regardless of the direction of the motor, the motor will stop immediately or decelerate and stop. Even if this signal goes HIGH again, the LSI will not let the motor start.

If the STP signal is already LOW when a Start mode command is written , the LSI will not let the motor start. You can select between immidiate stop and deceleratation stop by RENV.SPDS.

A noise filter can be applied by Output mode command.OCM4.

<u>4-2-14. ORG</u>

This is an input terminal for the origin position sensor signal.

When ORG signal control is enable (origin return operation) with Control mode command.CCM0=1 and when this signal goes LOW, the motor will stop immediately or decelerate and stop. Even if this signal goes HIGH again, the LSI does not start the motor.

When ORG signal control is disabled with Control mode command.CCM0=0 and pulse output is masked with Output mode command.OCM1=1 (in timer mode), this signal is disabled.

A noise filter can be applied by Output mode command.OCM4.

<u>4-2-15. +EL , -EL</u>

These are input terminals for end limit switch signals.

When an \overline{EL} signal which has the same direction as the operation goes LOW, the motor will stop immediately or decerelete and stop. The LSI will not let the motor restart, even when this signal goes HIGH again.

If the EL signal of the operation direction is already LOW when a Start mode command is written, the LSI will not let the motor start.

When pulse output is masked with Output mode command.OCM1=1 (in timer mode), this signal is disabled. A noise filter can be applied by Output mode command.OCM4.

<u>4-2-16. +SD , -SD</u>

These are input terminals for deceleration speed switch signals.

When +SD and -SD signals are enabled with Control mode command.CCM1=1 and when this signal which has the same direction as the operation goes LOW, the motor will stop immediately or decelerate and stop. Then, when this signal returns HIGH, the motor will accelerate again.

4-2-17. ø 1 / P1, ø 2 / P2, ø 3 / P3, ø 4 / P4

These are output terminals of excitation sequence signals for stepper motors. When sequence output is unnecessary, you can use these terminals as general-purpose input/output terminals (P1 to P4) with RENV.IOPM=1. If you use these as general-purpose input/output terminals, you can select input or output every terminal by RENV.IPM1 to IPM4.

If you use these as excitation sequence output terminals, sequence signals are switched with synchronized with the output pulses.

Using the \overline{F}/H terminals, you can select between 1-2 phase and 2-2 phase excitation sequencing.

Using the \overline{U}/B terminals, you can select between unipolar and bipolar excitation sequencing. When pulse output control is masked with Output mode command.OCM1=1, the excitation sequencing cannot be changed. Excitation secuence output can be masked (all terminals ø 1 to 4 are LOW level) with Output mode command.OCM2=1

4-2-18. +PO /PLS, -PO/DIR

These are output terminals of pulse train for motor driving.

These terminals have two modes: two pulse mode to output (+) and (-) direction pulse train and common pulse mode to output pulse trains and direction signals.

The mode of puse output is set by RENV.PMD. Output logis is set by Output mode command.OCM0. The direction of motor's operation is set by Control mode command.CCM3. The duty of output pulse train is 50%.

<u>4-2-19. BSY</u>

This is a terminal to monitor operation condtion.

This terminal becomes LOW level when this LSI operates.

It is used to check operation condition and to control current reduction of motor drive when a motor stops.

4-2-20. OTS

This is a general-purpose output terminal.

This terminal can be used as an excitation ON/OFF control signal for a motor driver IC.

This terminal becomes HIGH level with Control mode command.CCM4=1 and becomes LOW level with Control mode command.CCM4=0.

4-2-21. VDD, GND

These are power supply terminals.

Supply +3.0 to 3.6 V to the VDD terminals. Make sure to connect all of the power supply terminals.

4-2-22. (Open)

This is an output terminal for testing. Only PCD4611 has this terminal. Be sure to make it open.

5. Block Diagram

Note. Address signal input terminals varies according to the models. PCD4611: A0 to A1, PCD4621: A0 to A2, PCD4641: A0 to A3

6. CPU interface

6-1. Precaution for designing hardware

6-1-1. Prited board design

- To stabilize operation, we recommend 4-layers printed board with 3.3 V power layer and GND layer.
- We recommend that about 0.1 µF condenser is put between 3.3 V and GND near each side of thisi LSI.

6-1-2. Unused terminal

- Unused input terminals should be pulled up to 3.3 V with a 5K to 10K ohm resistor or connected to 3.3 V.
- Unused bi-directional terminals should be pulled up to 3.3 V with a 5K to 10K ohm resistor.
- Unused output terminals should be open (no connection).

<u>6-1-3. 5 V tolerant</u>

All signal terminas of this LSI have 5 V tolerant function. Please note the followings.

- Even though an output terminal is pulled up to 5 V, the voltage does not become more than 3.3 V. If more than 3.3 V of voltage is needed as HIGH level, level conversion circuit is necessary externally.
- When more than 3.3 V of voltage is input to an input (input / output) terminal, leakage occurs to 3.3 V through an internal pull-up resistor (40K to 240K ohm) and input current increases.
- There is no diode for protection from overvoltage between terminals and 3.3 V in the input circuit. When there is possibility that more than absolute maximum rating voltage is input, you should add protection circuit externally.

6-1-4. General-purpose input / output ports (ø1 / P1 to ø4 / P4)

General-purpose terminals are output terminals for sequence signals at default to be compatible with PCD45x1. If you use these as input ports, please make sure that you insert a series resistor to prevent from short ciruit with external output circuit.

If you use these as output ports, a series resistor is unnecessary. However, please note that the default condition is output level of sequence signals.

More than 1K ohm is needed to prevent from breakage of PCD46x1. To prevent from breakage of an external circuit, select a value of resistors so as that the current is less than the maximum output current of the external circuit.

6-1-5. Interrupt processing

When an interrupt occurs during processing of writing to / reading from registers and access to registers is made in the interrupt routine, the content of the register WR(RD) buffer is changed. Therefore, hold an interrupt processing during processing of writing to / reading from registers.

6-2. Examples of CPU interfaces

- Note 1. When PCD4621 is used, connection to the A3 terminal signal is unnecessary.
 - 2. When PCD4611 is used, connection to the A3 and A2 terminal signals is unnecessary.
 - 3. Set as follows with CPU software.
 - Select "8-bit bus space" for external bus width.
 - External wait is permitted.
 - Select "Low" for IRQ detection.

6-3. Address map

Four address areas are occupied per axis in PCD46x1. (1 byte / address)

Therefoe, 4 address areas in PCD4611, 8 address areas in PCD4621, 16 address areas in PCD4641 are occupied.

COMBF	: Command buffer
MSTS	: Main status
RegWBF	: Buffer for writing to registers
RegRBF	: Buffer for reading from registers

6-3-1. Address map of PCD4611

A1 to A0	Write	Read
00	Write to COMBF	Read MSTS
01	Write to RegWBF (7 to 0)	Read from RegRBF (7 to 0)
10	Write to RegWBF (15 to 8)	Read from RegRBF (15 to 8)
11	Write to RegWBF (23 to 16)	Read from RegRBF (23 to 16)

6-3-2. Address map of PCD4621

A2 to A0	Axis	Write	Read
000	Х	Write to COMBF_x	Read MSTS_x
001	Х	Write to RegWBF_x (7 to 0)	Read from RegRBF_x (7 to 0)
010	Х	Write to RegWBF_x (15 to 8)	Read from RegRBF_x (15 to 8)
011	Х	Write to RegWBF_x (23 to 16)	Read from RegRBF_x (23 to 16)
100	Y	Write to COMBF_y	Read MSTS_y
101	Y	Write to RegWBF_y (7 to 0)	Read from RegRBF_y (7 to 0)
110	Y	Write to RegWBF_y (15 to 8)	Read from RegRBF_y (15 to 8)
111	Y	Write to RegWBF_y (23 to 16)	Read from RegRBF_y (23 to 16)

6-3-3. Address map of PCD4641

A3 to A0	Axis	Write	Read
0000	Х	Write to COMBF_x	Read MSTS_x
0001	Х	Write to RegWBF_x (7 to 0)	Read from RegRBF_x (7 to 0)
0010	Х	Write to RegWBF_x (15 to 8)	Read from RegRBF_x (15 to 8)
0011	Х	Write to RegWBF_x (23 to 16)	Read from RegRBF_x (23 to 16)
0100	Y	Write to COMBF_y	Read MSTS_y
0101	Y	Write to RegWBF_y (7 to 0)	Read from RegRBF_y (7 to 0)
0110	Y	Write to RegWBF_y (15 to 8)	Read from RegRBF_y (15 to 8)
0111	Y	Write to RegWBF_y (23 to 16)	Read from RegRBF_y (23 to 16)
1000	Z	Write to COMBF_z	Read MSTS_z
1001	Z	Write to RegWBF_z (7 to 0)	Read from RegRBF_z (7 to 0)
1010	Z	Write to RegWBF_z (15 to 8)	Read from RegRBF_z (15 to 8)
1011	Ζ	Write to RegWBF_z (23 to 16)	Read from RegRBF_z (23 to 16)
1100	U	Write to COMBF_u	Read MSTS_u
1101	U	Write to RegWBF_u (7 to 0)	Read from RegRBF_u (7 to 0)
1110	U	Write to RegWBF_u (15 to 8)	Read from RegRBF_u (15 to 8)
1111	U	Write to RegWBF_u (23 to 16)	Read from RegRBF_u (23 to 16)

6-4. Description of map details

6-4-1. Command buffer (COMBF)

This is a buffer to write a start command, Control mode command, Register select command and Output mode command. A written command is determined by the upper 2 bits and memorized in separate command areas.

D7 to D6	Command (D5 to D0)		
00 Start mode command			
01	Conrol mode command		
10 Register select command			
11	Output mode command		

6-4-2. Main status (MSTS)

Monitor current status of axis.

7	6	5	4	3	2	1	0
FDWN	FUP	SDP	PLSZ	BUSY	ISTA	ISDP	ISTP

Bit	Bit name	Contents
0	ISTP	Requesting an interrupt by stop (0:ON, 1:OFF)
1	ISDP	Requesting an interrupt by ramping-down point (0:ON, 1:OFF)
2	ISTA	Requesting an nterrupt by external start (0:ON, 1:OFF)
3	BUSY	0:Stopping, 1:Running
4	PLSZ	1:(RMV=0)
5	SDP	1:(RMV \leq RDP)
6	FUP	1: Accelerating
7	FDWN	1: Decelerating

Note. During at least one is ON among ISTP, ISDP and ISTA, the INT terminal becomes LOW level.

6-4-3. Register WR buffer (RegWBF)

This is a buffer to write all bits to a register at once.

When the lower byte is written, all bits are written to the specified register at once. Therefore, please write the upper byte and middle byte, then write the lower byte last.

6-4-4. Register RD buffer (RegRBF)

This is a buffer to read all bits from a register at once.

The contents of the specified register are copied to this buffer by writing a register select command.

The order to read upper, middle and lower byte is arbitrary.

6-5. Procedure to write to / read from internal registers

In processing to access to registers, processing time is needed to transfer data at the following timing.

- In processing to write to registers, shortly after writing to the WR buffer (7 to 0).
- In processing to read from registers, shortly after writing a Register select command.

6-5-1. Procedure to write

Read the lower data from the RegRBF (7 to 0)

<u>7. Command</u>

Commands to control this LSI are written in the 8-bit command buffer.

Witten command is determined by the upper 2 bit and classified in four types and stored separately.

Bit 7and 6	Command type
00	Start mode command
	Command about start / stop such as FL constant start, FH constant start, high speed (with acceleration / deceleration) start, immediate stop and deceleration stop.
01	Control mode cmmand
	Command about operation mode such as continuous operation, origin return operation and positioning operation.
10	Register select command
	Command to select a register when writing to / reading from an internal register.
11	Output mode command
	Command about setting of input/output signals such as output pulse logic, mask of sequence output, selection of sensor input sensitivity and monitor mode.

 Writing a Start mode command will make the LSI starts operation. Therefore, write a Control mode command first and set to a register for operation and write a Output mode command. Then, write a Start mode command last.

- 2. When a setting value of a Control mode command and an Output mode command that you want to use is the same as the previous one, writing process is unnecessary.
- 3. Registers other than RMV, when this time value you want to set is the same as the previous one, writing process is unnecessary.
- 4. Even if you want to repeat the same feed amout positioning operation, please write feed amount to the RMV register every time.

7-1. Start mode command

Commands about start / stop.

7	6	5	4	3	2	1	0
0	 0	SCM5	SCM4	SCM3	SCM2	SCM1	SCM0

Bit	Bit name	Description						
0	SCM0	Operation speed selection						
		0: Operates at FL speed (RFL setting speed)						
		1: Operates at FH speed (RFH setting speed)						
1	SCM1	Hold start						
		0: Normal start						
		1: Hold start and start by inputting STA						
2	SCM2	Speed mode selection						
		0: Constant operation						
		1: High speed (with acceleration / deceleration) start						
4 to 3	SCM4 to 3	Start / Stop control						
		01: Request to stop immediately						
		10: Request to start						
		11: Request to decelerate and stop						
5	SCM5	INT output control when a motor stops						
		0: Does not output INT when a motor stops. (INT output is reset when a motor stops.)						
		1:Outputs INT when a motor stops						

Example of command setting

Start mode command		Operation			
Bit 7 to 0	Hex	Operation			
00010000	10(h)	FL constant start (INT is disabled while the motor stops) When this command is written during a motor stops, constant operation starts at FL speed. When this command is written during a motor is running, the speed changes to FL speed immediately.			
00110000	30(h)	FL constant start (INT is enabled while the motor stops.)			
00010010	12(h)	Hold FL constant start (INT is disabled while the motor stops.)			
00110010	32(h)	Hold FL constant start (INT is enabled while the motor stops.)			
00010001	11(h)	FH constant start (INT is disabled while the motor stops.) When this command is written during the motor stops, constant operation starts at FH speed. When this command is written during the motor stops, the speed change to FH speed immediately.			
00010011	13(h)	Hold FH constant start (INT is disabled while the motor stops.)			
00010101	15(h)	FH high-speed start (INT is disabled while the motor stops.) When this command is written during the motor stops, operation starts at FL speed and accelerates to FH speed. When this command is written during the motor is running, operation accelerates and the speed changes to FH speed.			
00010111	17(h)	Hold FH high-speed start (INT is disabled while the motor stops)			
00010100	14(h)	Deceleration on the way (INT is disabled while the motor stops) When this command is written during the motor is running, operation decelerates and the speed changes to FL speed. (When command is written during the motor is running, constant operation starts at FL speed.)			
00011101	1D(h)	Decelerate and stop(INT is disabled when the motor stops) When this command is written during the motor is running at FH speed, operation decelerates to FL speed and stops. When this command is written during a motor is running at FL speed, a motor stops immediately.			
00111101	3D(h)	Decelerate and stop (INT is enabled when the motor stops)			
00001000	08(h)	Stop immidiately (INT is disabled when the motor stops)			
00101000	28(h)	Stop immidiately (INT is enabled when the motor stops)			
00X11X1X		Prohibited setting			

7-2. Control mode command

This is a command about operation mode.

7	6	5	4	3	2	1	0
0	1	CCM5	CCM4	CCM3	CCM2	CCM1	CCM0

Bit	Bit name	Description
0	CCM0	ORG signal control
		0: ORG input is ignored.
		1: ORG input becomes LOW level, the motor stops immediately or decelerate and stop.
		Immeidate stop / deceleration stop is selected by RENV.ORDS.
1	CCM1	+SD, -SD signal control
		0: +SD , -SD input is ignored.
		1: When the signal of the operation directin is LOW level, the motor decelerates to FL speed.
2	CCM2	Positioning operation control
		0: Operation is not affected by the RMV setting value.
		1: Pulses set in the RMV are outputs and the motor stops automatically.
3	CCM3	Select operation direction
		0: Operation direction becomes positive.
		1: Operation direction becomes negative.
4	CCM4	OTS output signal control
		0: OTS terminal becomes LOW level.
		1: OTS terminal becomes HIGH level.
5	CCM5	Acceleration / deceleration characteristics
		0: Acceleration / deceleration characteristics is linear.
		1: Acceleration / deceleration is S-curve.

Example of command setting

Control mode command	Operation description							
Bit7 to 0								
01XX XXX0	ORG input is disabled.(ORG terminal can be monitored by RSTS.SORG.)							
01XX XXX1	When ORG input becomes LOW level, operation stops.							
01XX XX0X	+SD, -SD inputs are disabled.(+SD and -SD terminals can be monitored by RSTS.SPSD and RSTS.SMSD.)							
01XX XX1X	+SD or -SD input of operation direction become LOW level during FH high-speed operation, the motor							
	decelerates to FL speed . When the input returns to HIGH level, the motor accelerates to FH speed. This							
	command is disabled during FL constant operation and FH constant operation.							
01XX X0XX	Does not operate positioning by the RMV setting value.							
01XX X1XX	Operates positioning by the RMV setting value.							
01XX 0XXX	Operates in (+) direction.							
01XX 1XXX	Operates in (-) direction							
01X0 XXXX	Makes OTS terminal LOW level.							
01X1 XXXX	Makes OTS terminal HIGH level.							
010X XXXX	Linear acceleration / deceleration							
011X XXXX	S-curve acceleration / deceleration							
01XX X0X0	Continuous operation mode Controls start / stop by commands.							
01XX X0X1	Origin return mode							
	Starts a motor by command and stops it by the ORG input.							
01XX X1X1	Origin return mode (with the maximum feed amount setting)							
	After pulses set in the RMV are output, the motor stops, even though the ORG signal is not output.							
01XX X100	Positioning operation mode							
	After pulses set in the RMV are output, the motor stops.							

7-3. Register select command

Г

This is a command to select registers to write to or read from mainly.

7	6		5	4	3	2	1	0
1	0	F	RCM5	RCM4	RCM3	RCM2	RCM1	RCM0

Bit	Bit name	Description
2 to 0	RCM2 to 0	Register select code Selects registers to write to or read from with this 3 bits when RENV.46MD=0. Selects 4 bits including RCM3 when RENV.46MD=1. For detail, see 8. Register access in compatible mode.
3	RCM3	 Down counter operation control for positioning operation (When RENV.46MD=0) 0: Counts down every pulse output. (Normal operation) 1: Stop counting. (Pulses are output.) This is the most upper bit of register select codw when RENV.46MD=1. In this case, down counter operation control is set by the setting of RENV.DCSP.
4	RCM4	Ramping-down interrupt output control 0:INT is not output at a ramping-down point. (INT is reset). 1:INT is output at a ramping-down point.
5	RCM5	External start interrupt output control 0: INT is not output even thought operation starts by STA input. (INT is reset.) 1: INT is output when operation starts by STA input.

7-4. Output modecommand

This is a command about input/output signals.

7	6	5	4	3	2	1	0
1	1	OCM5	OCM4	OCM3	OCM2	OCM1	OCM0

Bit	Bit name	Description
0	OCM0	+PO / PLS, -PO / DIR output logic
		0: High level when logic of +PO, -PO and PLS are negative and DIR is (+) direction.
		1: Low level when logic of +PO, -PO and PLS are positive and DIR is (+) direction.
1	OCM1	Pulse output mask control
		0: Pulses are output during a motor is running. (Normal operation)
		1: Pulses output is masked and sequence output change stops. (Current position counter is
		operating.)
2	OCM2	Excitation securnce output mask control
		0: Seqence signals are output. (Normal operation))
		1: Sequence output terminals Ø1 to Ø4 are fixed to LOW level (masked.)
		Because sequence output terminals become general-purpose terminals with RENV.IOPM=1,
		terminals conditions are not changed by this setting. (RSTS.SPH1 to SPH4 are changed.)
3	OCM3	Stop control during acceleration / deceleration operation
		0: Acceleration and deceleration is available (Normal acceleration and deceleration)
		1: Acceleration and deceleration stop on the way
		(fixed to a speed on the way during accelerating or deceleration.)
		Making this bit to 1 during accelerating and deceleration maintains the speed at the time and
		making this bit to 0 continues accelerating / deceleration.
4	OCM4	Select sensitivity of ORG , +EL , -EL , STP input
		0: High sensitivity (responds more than one cycle width pulse input of reference clock.)
		1: Low sensitivity (responds more than four cycle width pulse input of reference clock.)
5	OCM5	Select monitor mode
		0: PCD4500 compatible mode
		1: PCD45x1 compatible mode or PCD46x1 mode (selected by RENV.46MD)

8. Register access in compatible mode

PCD46x1 is upward compatible with our PCD4500 and PCD45x1 series by software.

Accessible registers vary according to the compatible mode.

Output mode command.OCM5	RENV.46MD	Compatible mode name
1	1	PCD46x1 mode
1	0	PCD45x1 mode
0	1	DCD4500 mode
0	0	

8-1. List of register

Each axis has the following registers. Accessible registers vary according to compatible mode.

Register	Register description	Bit length	Setting range	Access	sible/inaccess mpatible mo	sible by de
name		_		PCD46x1	PCD45x1	PCD4500
RMV	Preset feed amount /	24	0 to 16,777,215	R/W	R/W	R/W
	confirm residual pulses					
RFL	Set FL speed	13	1 to 8,191	R/W	R/W	W
RFH	Set FH speed	13	1 to 8,191	R/W	R/W	W
RUD	Set acceleration / deceleration rate	16	2 to 65,535	R/W	R/W	W
RMG	Set magnification	10	2 to 1,023	R/W	R/W	W
RDP	Set ramping-down point	24	0 to 16,777,215	R/W	R/W	W
RIDL	Set idling pulses	3	0 to 7	R/W	R/W	W
RENV	Set environmental data	16	0000(h) to FFFF(h)	R/W	R/W	W
RCUN	Current position counter	24	0 to 16,777,215 or	R/W	-	-
			-8,388,608 to			
			+8,388,607			
RSTS	Extended status	16	0000(h) to FFFF(h)	R	R	-
RIDC	Productc cord monitor	8	00(h) to FF(h)	R	R	-
RIOP	Set general-purpose ports	6	0 to 3F(h)	R/W	-	-
RSPD	Current speed monitor	13	0 to 8,191	R	-	-

R/W : Both reading and writing are possible.

- W : Only for writing.
- R : Only for reading.

- : Neither treading nor writing are possible.

8-2. Register in the PCD46x1 mode

Registers to write to or read from are specified by Register select command.RCM3 to 0.

[
Register select command		Register WR buffer	
.RCM3 to 0	Bit 23 to 16	Bit15 to 8	Bit 7 to 0
0000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
0001	(Disabled)	RFL (15 to 8)	RFL (7 to 0)
0010	(Disabled)	RFH (15 to 8)	RFH (7 to 0)
0011	(Disabled)	RUD (15 to 8)	RUD (7 to 0)
0100	(Disabled)	RMG (15 to 8)	RMG (7 to 0)
0101	RDP (23 to 16)	RDP (15 to 8)	RDP (7 to 0)
0110	(Disabled)	(Disable)	RID (7 to 0)
0111	00(h) Note1	RENV (15 to 8)	RENV (7 to 0)
1000	RCUN (23 to16)	RCUN (15 to 8)	RCUN (7 to 0)
1001	(Disabled)	(Disabled)	(Disabled)
1010	(Disabled)	(Disabled)	RIOP (7 to 0)
1011 to 1111	(Disabled)	(Disabled)	(Disabled)

[Write to registers]

Note 1. Make sure to write 00(h) in the RENV (23 to 16) for delivery inspection.

[Read from registers]

Register select command		Register RD buffer	
.RCM3 to 0	Bit23to16	Bit15to8	Bit7to0
0000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
0001	Start mode command	RFL (15 to 8)	RFL (7 to 0)
0010	Control mode command	RFH (15 to 8)	RFH (7 to 0)
0011	Register select command	RUD (15 to 8)	RUD (7 to 0)
0100	Output mode command	RMG (15 to 8)	RMG (7 to 0)
0101	RDP (23 to16)	RDP (15 to 8)	RDP (7 to 0)
0110	RSPD (15 to 8)	RSPD (7 to 0)	RIDL (7 to 0)
0111	RIDC (7 to 0)	RENV (15 to 8)	RENV (7 to 0)
1000	RCUN (23 to 16)	RCUN (15 to 8)	RCUN (7 to 0)
1001	00(h)	RSTS (15 to 8)	RSTS (7 to 0)
1010	00(h)	00(h)	RIOP (7 to 0)
1011 to 1111	00(h)	00(h)	00(h)

8-2-1. RMV register

[WR select :10xx0000, RD select :10xx0000 (PCD46x1 mode)] This is a 24-bit register to set a number of output pulses in positioning operation mode. Setting range is 0 to 16,777,215 (FFFFF(h))

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			-	-			_	-															î
			•																				
			i i					1					i i			1							i
			1							1	1						1				1 1		1

This register operates as a down counter for positioning control.

This register counts backward every pulse output in any modes such as continuous operation, origin return operation, positioning operation.

If "stop counting" is selected for the setting of "down count operation control for positioning" with RENV.DCSP=1, this register does not count.

The value of counter (the number of residual pulses) can be read during a motor is running and stopping. In positioning operation mode, start a motor after you set a number of output pulses in this register (counter). After the start, the value of the counter decreases. When the number of pulses set is output completely, the counter value becomes 0 and the motor stops automatically.

If you set "0" to this register and write a start comnad, this LSI does not output pulses and MSTS.BUSY and BSY output signals stop immediately.

When \overline{INT} output is set to enable when a motor stops, an \overline{INT} sigal is output.

Even when operation is interrupted by input of a stop command or external signals in positioning operation, the value of the down counter shows the number of residual pulses. Therefore all you have to do is to input a start command to output the number of residual pulses.

If this LSI completes to output the number of preset pulses, the value of the down counter becomes 0. Therefore, when you want to operate the same number of pulses as the previous one, you have to set the value in the RMV register again.

8-2-2. RFL register

[WR select : 10xx0001, RD select : 10xx0001 (PCD46x1 mode)] This is a 13-bit register to set step value of FL speed. (Bit12 to 0)

Setting range is 1 to 8,191(001FFF(h)).

Bit 23 to 16 is to monitor Start mode command (only for reading). When the LSI is writing, the setting value of this register is disabled.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0							*	*	*													
							/																

Monitor of Start mode command

RFL register

Note. Bit with * is disabled during writing, and 0 during reading.

In the high-speed (with accelerating or decelerating) start, a motor starts operation at the FL speed and accelerates to the FH speed.

When a deceleration stop command is written, a motor starts deceleration. When the speed reachs to the FL speed, a motor stops. The relationship between the RFL setting value and the FL speed varies with the speed magnification calculated by the RMG setting value.

FL speed [pps] = (RFL setting value) × (Speed magnification)

Note. If FL speed is set to "0", negative logic output pulse is fixed to LOW level and a motor may not stop. Make sure to set more than 1.

8-2-3. RFHregister

[WR select : 10xx0010, RD select : 10xx0010 (PCD46x1 mode)]

This is a 13-bit register to set step value of FH speed. (Bit 12 to 0)

Setting range is 1 to 8,191(001FFF(h)).

Bit 23 to 16 is to monitor Control mode command (only for reading). When the LSI is writing, this register is disabled.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1						1 1 1	*	*	*	1 1 1												-
							/																

Monitor of Control mode command

RFH register

Note. Bit with * is disabled during writing, and 0 during reading.

In the high-speed (with accelerating or decelerating) start, a motor starts operation at the FL speed and accelerates to the FH speed.

The relationship between the RFH setting value and the FH speed varies with the speed magnification calculated by the RMG setting value.

FH speed [pps] = (RFH setting value) × (Speed magnification)

	18
Note If FH speed is set to "0" pegative output pulse is fixed to LOW level and a motor may not stop. Make	1
sure to set more than 1	1
	a 18 -

<u>8-2-4. RUD register</u>

[WR select :10xx0011, RD select :10xx0011 (PCD46x1 mode)] This is a 16-bit register to set characteristics of acceleration and deceleration. (Bit 15 to 0)

Setting range is 2 to 65,535 (00FFFF(h)).

Bit 23 to 16 is to monitor Register select command(only for reading). When the LSI is writing, this register is disabled.

_	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	1	0																						
								/	<u>۱</u>															

Monitor register select command

RUD register

RMG register

The relationship between the RUD setting value and the time of acceleration / deceleration is as follows.

1. During linear acceleration / deceleration

Time of acceleration / deceleration [s]

= (RFH setting value - RFL setting value) × (RUD setting value) / (Reference clock frequency [Hz])

2. During S-curve acceleration / deceleration

Time of acceleration / deceleration [s]

= (RFH setting value - RFL setting value) × (RUD setting value) × 2 / (Reference clock frequency [Hz])

8-2-5. RMG register

[WR select : 10xx0100, RD select : 10xx0100 (PCD46x1 mode)] This is a 10-bit register to set speed magnification. (Bit 9 to 0)

Setting range is 2 to1,023 (0003FF(h)).

Bit 23 to 16 is to Output mode command (only for reading). When the LSI is writing, this register is disabled.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1				1 1 1			*	*	*	*	*	*							1			
							/							`									

Monitor of Output mode command

Note. Bit with * is disabled during writing, and 0 during reading.

DA70133-1/0E

The value of speed step (1 to 8,191) can be set in the speed setting registers (RFL, RFH). The relationship between speed step value and output pulse speed is set in this register.

Output pulse speed [pps] = (value of the speed setting register) × (speed magnification)

Speed magnification [times] = (reference clock frequency [Hz]) / (RMG setting value × 8192)

RMG setting	Speed	RMG setting	Speed	RMG setting	Speed
value	magnification rate	value	magnification rate	value	magnification rate
600 (258(h))	1x	60 (03C(h))	10x	6 (006(h))	100x
300 (12C(h))	2x	30 (01E(h))	20x	3 (003(h))	200x
120 (078(h))	5x	12 (00C(h))	50x	2 (002(h))	300x

[Setting example when the reference clock is 4.9152 MHz (typical example)]

8-2-6. RDP register

[WR select :10xx0101, RD select :10xx0101 (PCD46x1 mode)]

This is a 24-bit register to set a ramping-down point.

The setting range changes according to the setting method of a ramping-down point..

23 22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

This register is used to set a timing to start deceleration in positioning operation mode.

The setting value of this register is disabled in other than positioning operation mode (Control mode command.CCM2=0).

There are two setting methods of a ramping-down point: manual setting and automatic setting. This is selected by RENV.ASDP.

The definition of the setting value to this register varies with the method to set a rampin-down point.

1. Manual setting (RENV.ASDP=0)

The timing to start deceleration is set by a number of residual pulses.

Setting range is 0 to 16,777,215 (FFFFF(h)).

When RPLS (number of residual pulses) \leq (RDP setting value), deceleration starts.

2. Automatic setting (RENV.ASDP=1)

Set a correction value with sign against an automatic setting value.

When a positive number is set, a motor starts decerelation earilier. After deceleration is complete, a motor operates at FL speed and stops.

When negative number is set, a motor starts deceleration later. Before the speed reaches to FL speed, a motor stops.

The automatic setting value is "0" at the start and increases by counting pulses output during acceleration. If you want to use an automatic setting value, you set to "0".

The setting range of a correction amount is -8,388,608 (800000(h)) to +8,388,607 (7FFFF(h)).

When RPLS (number of residual pulses) ≤ (automatic setting value) + (RDP setting value), deceleration starts.

Automatic setting value is "0" at the start and increases by counting pulses output during acceleration. It decreases by counting pulses output during deceleration.

If the above condition to start deceleration is met at the start, a motor operates at the FL speed withoug acceleration in both manual setting and automatic setting.

RIDL register

8-2-7. RSPD monitor, RIDLregister

[WR select :10xx0110, RD select :10xx0110 (PCD46x1 mode)]

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0														*	*	*	*	*			
																,							

RSPD monitor

Note. Bit with * is disabled during writing, and 0 during reading.

1. RSPD monitor

This is a monitor of the current speed only for reading to shows a step number like RFL and RFH register.

The range is 0 to 8,191. The setting value is read from bit 23 to 8. When the LSI is writing, the setting value of this register is disabled.

The RSPD monitor value becomes 0 during a motor stops.

The relationship between the RSPD monitor value and operation speed varies with the speed magnification calculated by the RMG setting value.

Operation speed [pps] = (RSPD monitor value) × (Speed magnification)

2. RIDL register

This is a 3-bit register to set number of idling pulses (bit 2 to 0).

The setting range is 0 to 7.

A motor starts acceleration after the LSI outputs a number of pulses set in this register in high-speed (with acceleration / deceleration) start.

When "0" is set in this register, the motor starts acceleration from the start. Therefore, the initial pulse cycle is shorter the cycle of FL speed.

When "2" or "more than 2" is set, the initial pulse cycle is the same as the cycle of FL speed.

About the detail of idling pulse output, see 11-2. Idling pulse output.

8-2-8.RIDC monitor, RENV register

[WR select :10xx0111, RD select :10xx0111 (PCD46x1 mode)]

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												,											
	1													1									
							/	、 、															/

RIDC monitor

RENV register

1. RIDC monitor

This is used to monitor of production information cord for only reading. (8-bit) The setting value is disabled during writing.

23	22	21	20	19	 18	17	16
IDC3	IDC2	IDC1	IDC0	0	0	0	S46M

Bit	Bit name	Description
16	S46M	This is a monitor of the setting value of RENV.46MD.
19 to 17	Undefined	(Always set to "000")
23 to 20	IDC3 to 0	Product information code
		1001: PCD4611
		1010: PCD4621
		1100: PCD4641

2. RENV register

This is an environmental setting register to set a basic operation specification.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IPM4	IPM3	IPM2	IPM1	IOPM	0	PREV	PSTP	ORRS	ORDS	ELDS	SPDS	ASDP	DCSP	46MD	PMD
· ·		-	•			•									
Bit	Bit	name						C	ontents						
0	PMD)	Select	pulse mo	de ou	put from	the ,+P0) / PLS a	and -PO	/ DIR tei	rminals.				
			0 : C	outputs (+) direc	tion pulse	e from th	ie +PO te	erminal a	and (-) d	irection	pulse fro	m the -I	PO termi	nal.
			1 : C	outputs p	ulses f	rom the F	PLC term	ninal and	directior	n signals	are out	put from	the DIF	R termina	I.
		_	(I=(+) dire	ction,	L=(-) dire	ction)								
1	46M	D	Select	function r	nodes			00404		• • • •	N				
	D 00		0 : P	CD45X1	equiva		tion, 1:P	CD46X1	all funct		Note 1	4 \			
2	DCS	iΡ	Contro	I the dow	n cour	iter for po	sitioning). (availai	ble wher	1 RENV.	46MD=	1)			
			U:U		kwara	every ou	tput puis			ng ia uaad					
2		D	Select	the eettin	ND=0	, Control		t control	seung	is used					
3	ASD	٢		ine seiin Ianual se	y or re	1 · Autom	own poir atic sotti	na							
4	SDU	9	Select	stop met	hod by			Ston imm	odiately	, 1 · Do	colorato	and sto	n)		
5	FID	s	Select	stop met	hod by	<u>+FI</u> an	d <u>-FI</u> i	nout $(0 \cdot$	Ston imr	nediatel			and sto	n)	
6		o NS	Select	stop met	hod by		innut (0	Ston im	mediate		y, r. Do	and sto	n)	γP)	
7	ORE	2S	Set aut	omatic re	eset of	RCUN (c	urrent n	osition c	ounter)	iy, i. D.			<u>'P)</u>		
	0.4	.0	0 : A	utomatic	reset	OFF	an one p	0010011-0	ountory						
			1 : R	leset auto	omatic	allv at the	e fallina e	edae of	ORG ir	nput (OF	F to ON) in oriai	n return	operatio	n.
8	PST	Р	Set ope	eration of	RCUI	N (current	position	n counter	.)	1		/ - 0			
			0 : C	ount eve	ry puls	se output	(Count e	even whe	, en Outpu	ut mode	commai	nd.OCM	1=1)		
			1 : S	top coun	ting				·						
9	PRE	V	Set a c	ount dire	ction c	f RCUN ((current	position (counter)						
			0 : C	ount forv	vard in	(+) direc	tion ope	ration an	d count	backwai	red in (-)	directio	n operat	tion.	
			1 : C	ount bac	kward	in (+) dire	ection op	peration a	and coui	nt forwai	rd in (-) o	direction	operatio	on.	
10	Unde	efined	Always	set to 0.											
11	IOP	Ν	Select	functions	of ter	minal ø1/	P1 to ø	4/ P4							
			0 : U	lse as ø1	/ P1 to	0 ø4/ P4 (sequenc	e signals	s) output	t termina	ls				
			1 : U	lse as P1	to P4	(general-	purpose	e input/ou	uput port	:) input /	output t	erminals			
12	IPM ²	1	Select	specifica	tion of	general-p	ourpose	input / oı	utput teri	minal P1					
			(0: ge	neral-pur	poseo	utput tern	ninal, 1:	general-	purpose	input te	rminal)	Note 2	2		
13	IPM2	2	Select	specifica	tion of	general-p	ourpose	input / ou	utput teri	minal P2	2				
			(0: ge	neral-pur	poseo	utput tern	ninal, 1:	general-	purpose	input te	rminal)	Note 2	2		
14	IPM3	3	Select	specifica [.]	tion of	general-p	ourpose	input / oı	utput teri	minal P3	} 				
			(0: ge	neral-pur	poseo	utput tern	nınal, 1:	general-	purpose	input te	rminal)	Note 2	2		
15	IPM4	1	Select	specifica	tion of	general-p	ourpose	input / oi	utput teri	minal P4		NUM	`		
			(0: ge	neral-pur	poseo	utput tern	ninal, 1:	general-	purpose	input te	rminal)	Note 2	2		
31 to16			For del	ivery insp	pectior	i (Always	set to 0)							

Note 1. RENV.46MD setting is enabled when Output mode command.OCM5=1 (extended monitor)

Note 2. RENV.IPM1 to IPM4 setting is disabled when RENV.IOPM=0.

Note 3. Terminals ø1/P1 to ø4/P4 are output terminals ø1 to ø4 at default setting.

If you use these as input ports, please make sure that you insert a series resistor to prevent short ciruit with external output circuit

More than 1K ohm is needed to prevent from the breakage of PCD46x1. To prevent from the breakage of an external circuit, select a resistor value so that the current is less than the maximum output current of the external circuit.

8-2-9. RCUN register

[WR select:10xx1000, RD select:10xx1000 (PCD46x1mode)]

Thi is a 24-bit current position counter.

Setting range is 0 to 16,777,215(FFFFF(h)) or -8,388,608(800000(h)) to +8,388,607(7FFFF(h)) and vales according to number control of control software.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
,			-	,			-								-			•					i
											•								•			•	•

This value becomes FFFFF(h) after counting down from 000000(h) and becomes 000000h after counting down from FFFFF(h).

The register counts every pulse output when RENV.PSTP=0, and does not count RENV.PSTP=1

This register count forward in (+) direction operation and count backward in (-) direction operation with RENV.PREV=0. With RENV.PREV=1, the count direction is reverse.

With RENV.ORRS=1, this counter is reset automatically at origin point in origin return operation. For detail, see 9-2. Origin return mode.

8-2-10. RSTS monitor

This is an extended status for only reading (16 bit).

The reading value from bit 23 to 16 becomes 00(h). The setting value is disabled when the LSI is writing.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SINT	SOTS	SPPO	SMPO	SPH4	SPH3	SPH2	SPH1	SPHZ	SPSD	SMSD	SSTA	SSTP	SORG	SPEL	SMEL

Bit	Bit name	Description
0	SMEL	-EL terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
1	SPEL	+EL terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
2	SORG	ORG terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
3	SSTP	STP terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
4	SSTA	STA terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
5	SMSD	-SD terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
6	SPSD	+SD terminal status monitor (0:OFF (HIGH level) 1:ON (LOW level))
7	SPHZ	Excitation origin point monitor (See 11-6. Excitation sequence output)
		0:OFF 1:ON (Excitation origin point)
8	SPH1	ø1 signal monitor (0: LOW level 1:HIGH level)
9	SPH2	ø2 signal monitor (0: LOW level 1:HIGH level)
10	SPH3	ø3 signal monitor (0: LOW level 1:HIGH level)
11	SPH4	ø4 signal monitor (0: LOW level 1:HIGH level)
12	SMPO	-PO / DIR terminal status monitor (0:LOW level 1:HIGH level)
13	SPPO	+PO / PLS terminal status monitor (0:LOW level 1:HIGH level)
14	SOTS	OTS terminal status monitor (0:LOW level 1:HIGH level)
15	SINT	Interrupt request (per axis) (0:OFF 1:ON)

8-2-11. RIOP register

[WR select :10xx1010, RD select :10xx1010 (PCD46x1 mode)]

This register is use to set ouput level of general-purpose output ports by writing. Reading this register allows you to monitor status of general-input/output ports.

The reading value from bit 23 to 8 becomes 0000(h). The setting value is disabled when the LSI is writing.

7	6	5	4	3	2	1	0	
0	0	MFH	MUB	CP4	CP3	CP2	CP1	
Bit	Bit	name						Description
0	CP1		P1 term 0:LO	ninal cont W level	trol (In wi 1:HIGH	riting), ø1 level	/P1 term	inal status monitor (In reading)
1	CP2		P2 term 0: LC	ninal cont DW level	trol (In wi 1: HIGI	riting), ø 2 H level	2/P2 term	ninal status monitor (In reading)
2	CP3		P3 term 0: LC	ninal cont DW level	trol (In wi 1: HIGI	riting), ø3 H level	/P3 term	inal status monitor (In reading)
3	CP4		P4 term 0: LC	ninal cont DW level	trol (In wi 1: HIGI	riting), ø4 H level	/P4 term	inal status monitor (In reading)
4	MUB		Ū/B teri 0: LC	minal sta)W level	tus moni 1: HIGI	tor (disab H level	led in wr	iting)
5	MFH		F/H terr 0: LC	minal sta)W level	tus moni 1: HIGI	tor (disab H level	led in wri	iting)

[RD select :10xx1000 (PCD46x1 mode)]

Four terminals ø1 / P1, ø2 / P2, ø3 / P3, ø4 / P4 can be used as sequence signal output terminals and general-purpose input/output port terminals.

These are sequence signal output terminals with RENV.IOPM=0, and general-purpose input / output port terminals with RENV.IOPM=1.

If you select them as general-purpose input/output port terminals, select input or output every terminal with the setting of RENV.IPM1 to IPM4.

When the LSI was writing to this register, terminals set as output ports among CP 1 to 4 changes.

Monitor values of RSTS.SPH1 to SPH4 are output signal monitor of the circuit to generate sequence signals. Note that these are different from the level status of terminals ø1 / P1 to ø4 / P4.

8-3. Register in PCD45x1 mode

Registers to be written or read are specified by register select command.RCM2 to 0 [Write to registers]

Register select command		Register WR buffer	
.RCM2 to 0	Bit 23 to 16	Bit 15 to 8	Bit 7to0
000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
001	(Disabled)	RFL (15 to 8)	RFL (7 to 0)
010	(Disabled)	RFH (15 to 8)	RFH (7 to 0)
011	(Disabled)	RUD (15 to 8)	RUD (7 to 0)
100	(Disabled)	RMG (15 to 8)	RMG (7 to 0)
101	RDP (23 to 16)	RDP (15 to 8)	RDP (7 to 0)
110	(Disabled)	(Disabled)	RIDL (7 to 0)
111	00(h) (Note.1)	RENV (15 to 8)	RENV (7 to 0)

Note 1. Make sure to write 00(h) in RENV (23 to 16) for delivery inspection.

[Read from registers]

Registerselect command		Register RD buffer	
.RCM2to0	Bit 23 to 16	Bit 15 to 8	Bit7 to 0
000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
001	Start mode command	RFL (15 to 8)	RFL (7 to 0)
010	Control mode command	RFH (15 to 8)	RFH (7 to 0)
011	Register select command	RUD (15 to 8)	RUD (7 to 0)
100	Output mode command	RMG (15 to 8)	RMG (7 to 0)
101	RENV (7 to 0)	RDP (15 to 8)	RDP (7 to 0)
110	RSPD (15 to 8)	RSPD (7 to 0)	RIDL (7 to 0)
111	RIDC (7 to 0)	RSTS (15 to 8)	RSTS (7 to 0)

8-3-1. RMV register

[WR select :10xxx000, RDselect : 10xxx000 (PCD45x1 mode)] This is a 24-bit register to set a number of output pulses in positioning operation mode. Setting range is 0 to 16,777,215 (FFFFF(h))

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																						i	i i
			•																				1

The detail is the same as described in 8-2-1. RMV register. Down counter operation control for positioning is set by Register select command.
8-3-2. RFL register

[WR select :10xxx001, RD select :10xxx001 (PCD45x1 mode)]

This is a 13-bit register to set set value of FL speed. (Bit 12 to 0)

Setting range is 1 to 8,191 (001FFF(h)).

Bit 23 to 16 is to monitor Start mode command (only for reading). When the LSI is writing, this register is disabled.

Ļ	, •		1						1	1	· · · · · ·		1 1		1					1			1
0	0	÷	1					*	*	*													
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Monitor of Start mode command

RFL register

RFH register

RUD register

Note. Bit with * is disabled during writing, and 0 during reading.

The detail is the same as 8.2.2. RFL register.

8-3-3. RFH register

[WR select:10xxx010, RD select:10xxx010 (PCD45x1 mode)] This is a 13-bit register to set step value of FH speed. (Bit 12 to 0)

Setting range is 1 to 8,191 (001FFF(h)).

Bit 23 to 16 is to monitor Start mode command (only for reading). When the LSI is writing, this register is disabled.

23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0
0 1		* * *			

Monitor of Control mode command

Note. Bit with * is disabled during writing, and 0 during reading.

The detail is the same as 8.2.3. RFH register.

8-3-4. RUD register

[WR select :10xxx011, RD select :10xxx011 (PCD45x1 mode)] This is a 16-bit register to set characteristics of acceleration and deceleration. (Bit 15 to 0) Setting range is 2 to 65,535 (00FFFF(h)).

Bit 23 to 16 is to monitor Start mode command (only for reading). When the LSI is writing, this register is disabled.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
1	0																						
<u>`</u>							/	<u>۱</u>															

Monitor of Register select command

The detail is the same as 8-2-4. RUR register.

8-3-5. RMG register

[WR select : 10xxx100, RD select : 10xxx100 (PCD45x1 mode)] This is a 10-bit register to set speed magnification. (Bit 9 to 0)

Setting range is 2 to1,023 (0003FF(h)).

Bit 23 to 16 is to monitor Start mode command (only for reading). When the LSI is writing, this register is disabled.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1							*	*	*	*	*	*										

Monitor of Output mode command

RMG register

Note. Bit with * is disabled during writing, and 0 during reading.

The detail is the same as 8-2-5. RMG register.

RIDL register

8-3-6. RENV monitor, RDP register

[WR select : 10xxx101, RD select:10xxx101 (PCD45x1 mode)]

This is a 24-bit register to set a ramping-down point.

Bit 23 to16 cannot be read. (These bits are used to monitor the RENV register)

The setting range varies according to the method to set a ramping-down point.

[In	writing]
-----	----------

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							-								-								1	٦
		•	•		•	•					•												1	
																					1	1		
`																					-			7

RDP register (23 to 0)

[In reading]

	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			-				-								-								
	1	i																			i	. 1	i	
/								/	<u>\</u>															
		RF	NIV	reais	ter (7 to	0)							RD	P re	niete	-r (1	5 to	0)					
				i ogic		1 10	U 1									giuli		0.0	U ,					

The detail of the RDP register setting value is the same as 8-2-6.RDP register.

The LSIs of PCD45x1 series does not have ramping-down automatic setting function (RENV.ASDP). You can use this function in PCD45x1 mode of PCD46x1 series.

8-3-7. RSPD monitor, RIDL register

[WR select : 10xxx110, RD select : 10xxx110 (PCD45x1 mode)] This is a register to monitor current speed (RSPD) and set number of idling pulses. The setting value of bit 23 to 16 is disabled when the LSI is writing.

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0														*	*	*	*	*		1 1 1	

Monitor of RSPD register

Note. Bit with * is disabled during writing, and 0 during reading.

The detail of RSPD value and RIDL value is the same as 8-2-7.RSPD register, RIDL register.

8-3-8. RENV register, RIDC monitor, RSTS monitor

[WR select : 10xxx111, RD select : 10xxx111 (PCD45x1 mode)] These are registers to set operation environment (RENV) and to monitor RIDC and RSTS. The RENV register is read by "RD select:10xxx101". Bit 15 to 8 cannto be read.

[In writing]

_	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0																
-									<u> </u>					F	REN	IV re	gist	er						
[Ir	n rea	ading	g]																					
_	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
`			RI	DC n	noni	tor		/	<u> </u>						RS	TSr	noni	tor						

The detail of RIDC monitor and RENV register is the same as 8-2-8. RIDC monitor, RENV register. The detail of RSTS is the same as 8-2-10. RSTS monitor.

8-4. Registers in PCD4500 mode

Registers to be written or read are specified by register select command.RCM2 to 0.

Registerselect command		Register WR buffer	
.RCM2 to 0	Bit 23 to 16	Bit15 to 8	Bit7 to 0
000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
001	(Disabled)	RFL (15 to 8)	RFL (7 to 0)
010	(Disabled)	RFH (15 to 8)	RFH (7 to 0)
011	(Disabled)	RUD (15 to 8)	RUD (7 to 0)
100	(Disabled)	RMG (15 to 8)	RMG (7 to 0)
101	RDP (23 to 16)	RDP (15 to 8)	RDP (7 to 0)
110	(Disabled)	(IDisabled)	RIDL (7 to 0)
111	00(h) (Note 1)	RENV (15 to 8)	RENV (7 to 0)

[In writing to registers]

Note1.. Make sure that "00(h)" is written to RENV (23 to 16) for delivery inspection setting.

[In reading from registers]

Registerselect command		Register RD buffer	
.RCM2 to 0	Bit 23 to 16	Bit15 to 8	Bit7to0
000	RMV (23 to 16)	RMV (15 to 8)	RMV (7 to 0)
001 to 111	00h	00h	RSTS (7 to 0)

8-4-1. RMV register

[WR select :10xxx000, RD select:10xxx000 (PCD4500 mode)] This is a 24-bit register to set number of output pulses in positioning operation mode. Setting range is 0 to 16,777,215 (FFFFF(h)).

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	;																						;
	:																						-

The detail is the same as 8-2-1.RMV register.

Down counter operation control for positioning operation control is specified by Register select command.

8-4-2. RSTS monitor

[RD select : 10xxx001 to 10xxx111 (PCD4500 mode)]

This register is to monitor RSTS.

[In reading]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								

RSTS register (7 to 0)

The detail of RSTS (7 to 0) is the same as 8-2-10. RSTS monitor.

9. Operation mode

Note. PCD46x1 is upward compatible with our PCD4500 and PCD45x1 series by software. According to the compatible mode (PCD4500 mode, PCD45x1 mode and PCD46x1 mode), the procedure may different. The followings are the case of PCD46x1 mode.

There are the following operation modes: continuous mode, positioning mode, origin return mode, timer mode. These are selected by the setting of Control mode command, Output mode command and the RENV register.

Output mode	output mode Control mode		RENV	
command	command command		register	Operation mode
OCM1	CCM2	CCM0	PSTP	
0	0	0	0	Continuousmode
0	0	1	0	Operation return mode
0	1	1	0	Operation return mode (Maximum feed amount control)
0	1	0	0	Positioning mode
1	1	0	1	Timer mode

9-1. Continuous mode

This is an operation mode to continue operation until a stop command is written after start by inputting a start command.

The direction of operation is set by Control mode command.CCM3. (0:[+] direction, 1:[-] direction)

A value read from the RMV (down counter value for positioning control) decreases from the value at the start.

Operation direction in continuous mode		Control mode comma	and (WRITE)
0:(+) direction		7	0
1:(-) direction		0 1 r	n 0 - 0
Pulse output control		Output mode comma	and (WRITE)
0: Outputs		7	0
1: Does not output		1 1 1 -	n -
Set count operation of RCUN (current position counter)	<set in="" pstp="" renv=""></set>	RENV register	(WRITE)
0: Count pulse output (Count even when Output mode com	mand.OCM1=1)	15	8
1: Stop counting			n

9-1-1. Procedure example of (+) direction FL constant continuous operation

1. At the start	
COMBF	← 40(h) (Control mode command)
COMBF	← E0(h) (Output mode command)
COMBF	← 87(h) (RENV select command)
RegWBF (23 to 16)	← 00(h)
RegWBF (15 to 8)	← 00(h)
RegWBF (7 to 0)	← 02(h) (PCD46x1mode)
COMBF	← 10(h) (FL constant start command)
2. At the stop	
COMBF	← 08(h) (Immediate stop command)

9-1-2. Procedure example of (-) direction FH constant continuous operation

9-1-3. Procedure example of (+) direction FH high-speed continuous operation

1. At the start	
COMBF	< ← 40(h) (Control mode command)
COMBF	← E0(h) (Output mode command)
COMBF	< 87(h) (RENV select command)
RegWBF(23to16)	← 00(h)
RegWBF(15to 8)	← 00(h)
RegWBF(7to 0)	← 02(h) (PCD46x1 mode)
COMBF	15(h) (FH high-speed start command)
2. At the stop	
COMBF	1D(h) (Deceleration stop command)

9-2. Origin return mode

. . . .

After the start, a motor operates until an origin signals (ORG) turns ON. Operation direction is set by Control mode command.CCM3. (0:[+] direction, 1:[-] direction)

Even when a start command is written with \overline{ORG} terminals ON (LOW Level), a motor does not start. However, when an \overline{INT} signal is set to be output when a motor stops, an \overline{INT} signal is output.

You can control the maximum feed amount using positioning control with Control mode command.CCM2=1. In this case, you can set the maximum feed amoun in the RMD to prevent from endless operation by breakage of origin switch.

At the FH high-speed start, this LSI inputs an SD signal and decelerate operation to FL speed and stops by an ORG signal. With RENV.ORRS=1, RCUN (current position counter) is reset automatically at the fallling edge of ORG signal input.

With RENV.ORRS=1 and RENV.ORDS=1, RCUN (current position counter) is reset at the fallling edge of ORG signal input automatically and operation starts deceleration. After the speed reachs to FL speed, a motor stops. The stop position is not the origin point. However, the difference from the origin point can be control by RCUN value. (SD sensor can be omitted.)

A value read from RMV (Down counter value for positioning control) decreases from the value at the start.

DA70133-1/0E

Operation direction in origin return mode	<	CCM3>	Control mode command	(WRITE)
0: (+) direction			7	0
1: (-) direction			0 1 n 0	- 1
Operation direction in origin return mode with maximum feed	amount control <	CCM3>	Control mode command	(WRITE)
0: (+) direction			7	0
1: (-) direction			0 1 n 1	- 1
SD signal control	<	CCM1>	Control mode command	(WRITE)
0: SD input signal is disabled.			7	0
1: Making SD input signal LOW makes the speed deceler	rated to FL speed.		0 1	n 1
Pulse output control	<(OCM2>	Output mode command	(WRITE)
0: Output			7	0
1: Does not output			1 1	n -
Stop method by ORG input	<set in<="" ords="" td="" to=""><td>RENV></td><td>RENV register</td><td>(WRITE)</td></set>	RENV>	RENV register	(WRITE)
0: Stop immidately when ORG input turns ON.			7	0
1: Decelerate and stop when ORG input turns ON.			- n	1 -
RCUN automatic reset by inputting ORG	<set in<="" orrs="" td="" to=""><td>RENV></td><td>RENV register</td><td>(WRITE)</td></set>	RENV>	RENV register	(WRITE)
0: RCUN automatic reset OFF			7	0
1: RCUN is reset automatically at the falling edge of $\overline{\text{ORG}}$	input.		n	
Set the count operation of RCUN (Current position counter)	<set in<="" pstp="" td="" to=""><td>RENV></td><td>RENV register</td><td>(WRITE)</td></set>	RENV>	RENV register	(WRITE)
0: Count every pulse output (Count even when Output mod	le command.OCM1	=1)	15	8
1: Stop counting			- - - - -	- n

9-2-1. Procudure example of (+) direction of FH constant origin return operation

1. At the start	
COMBF	← 41(h) (Control mode command)
COMBF	← E0(h) (Output mode command)
COMBF	 87(h) (RENV select command)
RegWBF (23 to 16)	← 00(h)
RegWBF (15 to 8)	← 00(h)
RegWBF (7 to 0)	← 02(h) (PCD46x1mode)
COMBF	← 11(h) (FH constant start command)

2. At the stop

A motor stops automatically by turning a signal input ON. If you want to stop a motor during running, as follows. COMBF ← 08(h) (Immediate stop command)

9-2-2. Procedure example of (+) direction of FH high-speed origin return operation

1. At the start	
COMBF	← 43(h) (Control mode command)
COMBF	← E0(h) (Output mode command)
COMBF	← 87(h) (RENV select command)
RegWBF (23 to16)	← 00(h)
RegWBF (15 to 8)	← 00(h)
RegWBF (7 to 0)	← 02(h) (PCD46x1mode)
COMBF	← 15(h) (FH high-speed start command)

2. At the stop

A motor decelerates by \overline{SD} input = L, and stops automatically when \overline{ORG} signal input turns ON.

If you want to decelerate and stop a motor during running, as follows. (Command buffer) \leftarrow 1D(h) (Deceleration stop command)

DA70133-1/0E <u>9-2-3. Procedure example of (+) direction FH constant origin return opeation with maximum feed amount</u> <u>control.</u>

1. At the start		
COMBF	← 45(h) (Control mode command)	
COMBF	← E0(h) (Output mode command)	
COMBF	← 87(h) (RENV select command)	_
RegWBF (23 to 16)	← 00(h)	F
RegWBF (15 to 8)	← 00(h)	
RegWBF (7 to 0)	← 02(h) (PCD46x1 mode)	
COMBF	← 80(h) (RMV select)	
RegWBF (23 to 16)	← 00(h) (20,000 pulses max)	
RegWBF (15 to 8)	← 4E(h)	
RegWBF (7 to 0)	← 20(h)	
COMBF	← 11(h) (FH constant start command)	Ur

A motor stops automatically by outputting the setting pulses or turning \overline{ORG} signal ON.

9-3. Positioning mode

This is a mode to operate positioning spcified by number of pulses and direction. The direction of operation is specified by Control mode command.CCM3.

If a number of output pulses is set in the RMV register and operation starts, the value read from the RMV decreases. When the value reaches to 0, a motor stops.

The RMV setting value becomes 0 when positioning operation is complete. You have to set a value even if the value you want to set is the same as the previous setting.

With RMV setting value=0, a motor does not start even if a start command is written. However, when \overline{INT} signal is set to be output when a motor stops, \overline{INT} signal is output.

Operation direction in positioning mode	<ccm3></ccm3>	Control mode command	(WRITE)
0:(+) direction		7	0
1:(-) direction		0 1 n 1	
SD signal control	<ccm1></ccm1>	Control mode command	(WRITE)
0: SD input signal is disabled.		7	0
1: Making SD input signal LOW makes the speed dece	lerated to FL speed.	0 1 1	n -
Pulse output control	<ocm2></ocm2>	Output mode command	(WRITE)
0: Output		7	0
1: Does not output		1 1	n -
Stop method by ORG input	<set in="" ords="" renv="" to=""></set>	RENV register	(WRITE)
0: Stop immediately when ORG input turns ON.		7	0
1: Decelerate and stop when $\overline{\text{ORG}}$ input turns ON.		- n	1 -
RCUN automatic reset by inputting ORG	<set in="" orrs="" renv="" to=""></set>	RENV register	(WRITE)
0: RCUN automatic reset OFF		7	0
1: RCUN is reset automatically at the falling edge of \overline{OR}	G input.	n	1 -
Set the count operation of RCUN (Current position counter	Set to PSTP in RENV>	RENV register	(WRITE)
0: Count every pulse output (Count even when Output m	ode command.OCM1=1)	15	8
1: Stop counting			- n

9-3-1. Procudure example of 1000 pulses (+) direction of FH high-speed positioning operation

1. At the start	
COMBF	← 44(h) (Control mode command)
COMBF	← E0(h) (Output mode command)
COMBF	← 87(h) (RENV select command)
RegWBF (23 to 16)	← 00(h)
RegWBF (15 to 8)	← 00(h)
RegWBF (7 to 0)	← 0A(h) (Automatic ramping-down point setting)
COMBF	← 80(h) (RMV select)
RegWBF (23 to 16)	← 00(h) (1000 pulses = 3E8h)
RegWBF (15 to 8)	← 03(h)
RegWBF (7 to 0)	← E8(h)
COMBF	 15(h) (FH high-speed start command)

2. At the stop

A motor stops at the position of 1000 pulse.

9-4. Timer mode

This is a mode to use operation time as a timer with masking pulse output (Output mode command.OCM1=1) by positioning operation .

(Setting time) = (Pulse cycle of setting speed x (number of pulses set)

In timer mode, a motor stops when an STP signal becomes ON or a stop command is written. A motor does not stop even when the EL signal or ORG signal becomes ON.

9-4-1. Procedure example to use this mode as a 100ms timer

The time to output 100 pulses at 1000 pps is 100 ms. Therefore, after you set the speed to "1000 pps", set as follows.

COMBF	← 44(h) (Control mode command) Positioning operation
COMBF	← C2(h) (Output mode command) Pulse output is masked
COMBF	← 80(h) (Register select command) ······ RMV select
RegWBF (23 to 16)	← 00(h) (000064(h)=100)
RegWBF (15 to 8)	← 00(h)
RegWBF (7 to 0)	\leftarrow 64(h)
COMBF	← 30(h) (Start command) ······ FL constant start

A interrupt occurs when the time set passes.

10. Speed patterns

10-1. Speed patterns

Speed pattern	Continuous mode	Positioning operation mode
FL constant speed operation	1) Write an FL constant speed start command (10(h))	1) Write an FL constant speed start command (10(h)).
f FL	 Stop feeding by writing an immediate stop (08(h)) or deceleration stop (1D(h)) command. 	 Stop feeding when the positioning counter reaches zero, or by writing an immediate stop (08(h)) or deceleration stop (1D(h)) command.
\downarrow \downarrow t		
FH constant speed operation	 Write an FH constant speed start command (11(h)). 	 Write an FH constant speed start command (11(h)).
	 Stop feeding by writing an immediate stop command (08(h)). 	 Stop feeding when the positioning counter reaches zero, or by writing an immediate stop (08(h)) command.
$\begin{array}{ c c c c c } \hline 1 & 1 & 1 \\ \hline 1 & 2 \\ \hline \end{array} t$	When the deceleration stop comma and stops.	and (1D(h)) is at 2), a motor decelerates
High speed operation	1) Write an FH high speed start command (15(h)).	 Write a high speed start command (15(h)).
FH FH	 Start deceleration by writing a deceleration stop command (1D(h)). 	 Start deceleration when a ramping-down point is reached or by writing a deceleration stop command (1D(h)).
FL / i i i i i i i i i i i i i i i i i i		* When the ramping-down point setting is set to manual (RENV.ASDP = 0), and the ramping- down point value (RDP) is set to "0," the LSI immediately stops the motor.

10-2. Speet pattern settings

Specify the speed pattern using the registers shown in the table below.

If the register setting to be set is the same as the previous value, there is no need to write to the register again. Even if you wan to repeat the same feed amout for positioning operation, please write the feed amount to the RMV register every time.

Register	Description	Bit length	Setting range
RMV	Set feed amount	24	0 to 16,777,215 (FFFFFF(h))
RFL	Set FL speed	13	1 to 8,191 (1FFF(h))
RFH	Set FH speed	13	1 to 8,191 (1FFF(h))
RUD	Set acceleration / deceleration rate	16	1 to 65,535 (FFFF(h))
RMG	Set magnification	10	2 to 4,095 (3FF(h))
RDP	Set ramping-down point	24	0 to 16,777,215 (FFFFFF(h))
RIDL	Set idling pulse	3	0 to 7 (7(h))

[The place where register data are used in acceleration/deceleration operation]

 RFL: FL speed setting register (13-bit)
 Specify initial speed at FL constant speed and high-speed operation (acceleration / deceleration operation) in the range of 1 to 8,191 (1FFF(h)). The speed [pps] is the product of multiplying the magnification rate by the RMG setting value.

FL speed [pps] = RFL x magnification rate

RFH: FH speed setting register (13-bit)

Specify operation speed at FH constant speed and high-speed operation (acceleration / deceleration operation) in the range of 1 to 8,191 (1FFF(h)). In high-speed operation (acceleration/deceleration operation), specify a value larger than the RFL setting value. The speed [pps] is the product of multiplying the magnification rate by the RMG setting value.

FH speed [pps] = RFH x magnification rate

RUD: Acceleration / deceleration rate register (16-bit)

Specify the acceleration / deceleration characteristics when high-speed operation (acceleration/deceleration operation) is selected in the range of 1 to 65,535 (0FFFF(h)).

Relationship between the value entered and the acceleration / deceleration time will be as follows:

1. Linear acceleration / deceleration (Control mode command.CCM5=0)

Acceleration / deceleration time[s] = $\frac{(RFH - RFL) \times RUD}{Reference clock frequency [Hz]}$

2. S-curve acceleration / deceleration (Control mode command.CCM5=1)

Acceleration / deceleration time[s] = $\frac{(RFH - RFL) \times RUD \times 2}{Reference clock frequency [Hz]}$

RMG: Speed magnification rate register (12-bit)

Specify the relationship between the RFL and RFH settings and the speed, in the range of 2 to 4,095 (0FFF(h)). As the magnification rate becomes higher, the speed setting units tend to be coarser. Normally set the magnification rate as low as possible.

The relationship between the value entered and the magnification rate is as follows.

Speed magnification [times] = Reference clock frequency [Hz] RMG x 8192

[Magnification setting example when reference clock frequency=4.9152MHz]

Setting value	Speed	Range of output speed (pps)	Setting value	Speed	Range of output speed (pps)
	magnification			magnification	
600 (258h)	1	1 to 8,191	12 (00Ch)	50	50 to 409,550
300 (12Ch)	2	2 to 16,382	6 (006h)	100	100 to 819,100
120 (078h)	5	5 to 40,955	3 (003h)	200	200 to 1,638,200
60 (03Ch)	10	10 to 81,910	2 (002h)	300	300 to 2,457,300
30 (01Eh)	20	20 to 163,820			

RDP: Ramping-down point register (24-bit)

Specify a ramping-down point in high-speed (with acceleration / deceleration) positioning operation. The definition of the value to set in the RDP varies according to the setting status of the RENV register to set a ramping-down point setting (RENV.ASDP).

[Manual setting (RENV.ASDP=0)]

Specify a number of pulses from a ramping-down point to target position in the range of 0 to 16,777,215 (FFFFF(h)).

The optimum value of a ramping-down point is as follows.

1. Linear acceleration / deceleration (Control mode command.CCM5=0)

Optimum value [pulse] = $\frac{(RFH^2 - RFL^2) \times RUD}{RMG \times 16384}$

2. S-curve acceleration / deceleration (Control mode command.CCM5=1)

Optimum value [pulse] = $\frac{(RFH^2 - RFL^2) \times RUD}{RMG \times 8192}$

At the timing of (the number of residual pulses for positioning) \leq (RDP setting value), a motor starts decelerating.

[Automatic setting (RENV.ASDP=1)]

Because the speed profile of acceleration characteristics and the one of deceleration characteriscics are symmetric, the LSI memorizes the number of pulses for acceleration and use this value as the automatic setting of a ramping-down point. The range of automatic setting value (number of pulses for acceleration) to operate correctly is 0 to 8,388,607(7FFFFF(h)).

The RDP setting value is an offset from automatic setting value and set in the range of -8,388,608 (800000(h) to 8,388,607 (7FFFFF(h).

When an offset amount is positive number, a motor starts deceleration earlier and operates at FL speed after deceleration is completes.

When an offset amount is negative number, a motor stops before the speed can not be reached to FL speed. When offset is unnecessary, set "0".

10-3. Setting example of acceleration / deceleration pattern

When initial = 1000 [pps], operation speed = 10000 [pps], acceleration / deceleration time = 300 [ms] in S-curve acceleration / deceleration positioning operation, a setting value is calculated as follows. (Reference clock = 4.9152 MHz)

- 1. Set Control mode command=64h (S-curve acceleration / deceleration positioning).
- 2. Set a feed amount 4000 in the RMV.
- 3. To output 10000 [pps], set a speed magnification as 2x mode and RMG=300 (12C(h))
- 4. Set 500(1F4(h)) in the RFL so as to set initial speed 1000 [pps] in 2x mode.
- 5. Set 5000(1388(h)) in the RFH so as to set operation speed 10000 [pps] in 2x mode.
- 6. Calculate acceleration / deceleration rate (RUD) setting value using acceleration / deceleration time.

Acceleration / deceleration time = $\frac{(RFH - RFL) \times RUD \times 2}{Reference clock frequency [Hz]}$ RUD = 0.3 [s] x 4,915,200 [Hz] / ((5000-500) x 2) = 163.84

A RUD value is an integer. "164" that is a nearest integer wil be set.

Acceleration / deceleration time at the time is 300.29 [ms].

Set RENV.ASDP = 1 and RDP = 0 in automatic ramping-down point setting.
 In manual setting, set RENV.ASDP = 0 and calculated a RDP setting value as follows.

RDP setting value = $\frac{(RFH^2 - RFL^2) \times RUD}{RMG \times 8192}$

 $= (5000^2 - 500^2) \times 164 / (300 \times 8192) = 1651.6$

By rounding the above value down to an integer, RDP setting value =1651

8. High-speed start command (15(h)) is written.

10-4. Changing speed patterns in operation

By changing the RFL, RFH and RUD registers in operation, the speed and the rete of acceleration can be changed on the fly. However, if a ramping-down point is set to automatic (RENV.ASDP=1) in the positioning mode, do not change the values for the RFL and RUD registers in operation. The automatic ramping-down point function will not work correctly.

[Changing speed during a linear acceleration / deceleration]

- Make RFH larger during accelerating, the motor acclerates until the speed reaches the corrected speed. (Old speed < new speed)
- Make RFH smaller during accelerating, the motor decelerates until the speed reaches the corrected speed. (Current speed < new speed < old speed)
- Make RFH smaller during accelerating, the motor decelerates until the speed reaches the corrected speed. (RFL ≤ new speed < current speed)
- Make RFH smaller during accelerating, the motor decelerates until the speed reaches the corrected speed. (New speed < RFL)
- Make RFH larger after accelerating is complete, the motor acclerates until the speed reaches the corrected speed.
- 6. Make RFH smaller after accelerating is complete, the motor decelerates until the speed reaches the corrected speed.

[S-curve during a linear acceleration /deceleration]

- 1. Make RFH larger during accelerating, the motor acclerates to the old speed and accelerates to the new speed again. (Old speed < new speed)
- 2. Make RFH smaller during accelerating, the motor decelerates until the speed reaches the corrected speed and operates at the constant speed. (Current speed < new speed < old speed)
- 3. Make RFH smaller during accelerating, the motor decelerates until the speed reaches the corrected speed. (RFL ≤ new speed < current speed)
- 4. Make RFH smaller during accelerating, the motor decelerates to the FL speed and decelerates to the new speed again. (New speed < RFL)
- 5. Make RFH larger after accelerating is complete, the motor acclerates until the speed reaches the corrected speed.
- 6. Make RFH smaller after accelerating is complete, the motor decelerates until the speed reaches the corrected speed.

11. Function description

<u>11-1 Reset</u>

This LSI is reset if more than 3 clocks of reference clock are input with making \overline{RST} terminal LOW level. All registers and all output terminals status is not determined until reset from power on.

After reset, statas becomes the default setting as follows.

Description	Default	Condition
Start mode command	00(h)	
Control mode command	40(h)	
Register select command	80(h)	
Output mode command	C0(h)	
RMV, RFL, RFH, RUD, RMG, RDP, RIDL, RENV, RCUN, RIOP registers	0	
Main status (MSTS)	37(h)	
Register WR buffer	000000(h)	
Register RD buffer	000000(h)	
RSTS register	0x11 x001 1xxx xxxx	X varies according
		to input terminal
RIDC register	90(h)	PCD4611
	A0(h)	PCD4621
	C0(h)	PCD4641
RSPD register	0000(h)	
Terminals D0 to D7	High impedance	
Terminals \overline{INT} , \overline{WRQ} , +PO / PLS, -PO / DIR, \overline{BSY}	H level	
Terminal OTS	L level	
Terminals ø1 / P1, ø2 / P2, ø3 / P3, ø4 / P4	H, L, L, H	Ū/B termina = L
	H, L, L, L	Ū/Bterminal = H

<u>11-2. Idling pulse output</u>

When a motor is started at FH high speed, the motor will normally accelerate right after starting. The idling pulse function enables the acceleration to start only after outputting some pulses at FL speed. If this function is not used and the speed calculated from the initial output pulse cycle will be higher than the FL speed, the motor may not start automatically even if the FL speed is set to approximately the auto start frequency.

To solve this problem, the LSI can start acceleration after 1 to 7 pulses are output at FL speed. Then the motor will secure to start from FL speed. The pulses output at FL speed are referred to as "idling pulses " and a number of pulses is set to in the RIDL register.

The allowable range is from 0 to 7 and this mode is available in high-speed operation. When this is set to 0, the motor will start as normal.

The timing when output pulse train (PO) is output in negative logic is as follows.

<u>11-3. External start control</u>

This LSI can be started using an external signal. Using this function, multiple axes can be started simultaneously. To use it, make Start mode command.SCM1=1, and write a start command with hold start.

After that hold is released at the falling edge of STA terminal, a motor starts.

To cancel the hold, an immediate stop command can also be used.

The LSI cannot detect an STA signal shorter than 4 reference clock cycles.

While "Hold the start" mode, if an <u>STP</u> or <u>EL</u> signal of the same direction as operation is input, the LSI will store the stop condition, and the LSI will not start operation, even if an <u>STA</u> signal is given. The motor will not start until the next start command is given.

The start control bit (SCM4) that is a monitor of start command in the RD buffer (23 to 16) when the LSI reads the RFL register, will change from "1" to "0" when a motor stops.

[Start timing (Hold FH constant start)]

<u>11-4. External stop control</u>

This LSI can be stopped instantly using an external signal. With this function, the motor can be stopped in an emergency and multiple axes can be stopped simultaneously.

When the STP terminal goes Low level, the motor will stop immediately or decelerate and stop.

A motor stops immidiately with RENV.SPDS=0 and decelerates and stops with RENV.SPDS=1.

During $\overline{\text{STP}}$ terminal is Low level, operation completes without outputting pulses even though a start command is written. Even in this case, an $\overline{\text{INT}}$ signal can be ouput when a motor stops.

The sensitivity of the STP signal input can be selected using Output mode command.OCM4.

11-5. Output pulse mode

There are 2-pulse mode and common pulse mode in output pulse mode and they can be selected by RENV.PMD. With RENV.PMD=0, the selected mode is 2-pulse mode, the LSI outputs pulse train signals from terminal (+PO / PLS) in (+) direction operation and from terminal (-PO / DIR) in (-) direction operation.

With RENV.PMD=1, the selected mode becomes common pulse mode, the LSI outputs pulse train signals from terminal (+PO / PLS) and direction signals from terminal (-PO / DIR).

The logic of output signals can be selected by Output mode command.OCM0.

RENV.PMD	OCM0	(+) direction operation	(-) direction operation
0	0	+P0 -P0 H	+P0 H -P0
0	1	+P0	+PO <u>L</u> -PO
1	0	PLS DIR H	PLS
1	1	PLS	PLS

11-6. Excitation sequence output

This LSI can generate 2-2 phase and 1-2 phase excitation sequences for 2-phase stepper motors to provide unipolar and bipolar driving.

Excitation sequence signal is output from four terminals ø 1 / P1, ø 2 / P2, ø 3 / P3, ø 4 / P4.

This 4 terminals is also used as general-purpose input and output port terminals. When these are used to output excitation sequence signals, set RENV.IOPM=0.

Switch between unipolar driving and bipolar driving is made by terminal \overline{U}/B . This setting latches the setting level with \overline{RST} =L.. Therefore, input \overline{RST} after setting change.

Switch between 2-2 phase excitation and 1-2 phase excitation is made by terminal \overline{F}/H .

This setting is not tached. You can switch during operation.

When switching to 2-2 phase excitation at 1 phase excitation in 1-2 phase excitation (STEP 1,3,5,7 in 1-2 phase excitation in below table), the next pulse is 2 phase excitation.

[Excitation sequence for unipolar] (\overline{U} /B=L)

2-2 phase excitaiton (F/H=L)					
STEP	0	1	2	3	0
ø 1	Н	Н	L	L	Н
ø 2		H	H	L	∟
ø3			H	Н	⊥
Ø 4	Н	L	L	Η	Η
SPHZ	Н	L	L	L	Н
(-)←C	(-)←Operation direction→(+)				

	1-2 p	bhas	e ex	citat	ion (F/H	=H)	l	
STEP	0	1	2	3	4	5	6	7	0
ø 1	Н	Н	Н	L	L	L	L	L	Н
ø2	L	L	Η	Н	Η	L	L	L	L
ø3	L	L	L	L	Η	Н	Н	L	L
ø 4	Н	L	L	L	L	L	Н	Н	Н
SPHZ	Н	L	L	L	L	L	L	L	Н
(-) \leftarrow Operation direction \rightarrow (+)									

[Excitation sequnce for bipolar] (\overline{U} /B=H)

2-2phase excitation (F/H=L)					
STEP	0	1	2	3	0
Ø 1	Н	Н	L	L	Н
ø2	L	H	H		L
ø3	L	∟	∟		∟
Ø 4	L	∟	∟		∟
SPHZ	Η	∟	∟		H
(-)←C	pera	tion c	lirecti	on→	(+)

1-2 phase excitation (F/H=H)									
STEP	0	1	2	3	4	5	6	7	0
ø 1	Η	Η	Η	Η	L	L	L	L	Η
ø2	L	L	Н	Η	Η	Н	L	L	L
øЗ	L	L	L	Η	L	∟	L	Η	L
ø4	L	Η	L	L	L	H	L	L	L
SPHZ	Η	L	L	L	L	L	L	L	Η
(-) \leftarrow Operation direction \rightarrow (+)									

Note. - SPHZ means RSTS.SPHD and it is excitation origin monitor signal to confirm as status.

- With Output mode command.OCM2=1, all ø1 to ø4 outputs become L level.

[Timing for excitation sequence change]

When pulse train output signal changes ON to OFF, a sequence signal changes.

Excitation origin monitor	<rsts.sphz></rsts.sphz>	RSTS register	(READ)
0: Sequence output (Ø1 to Ø4) step is not an excitation origin position	on.	7	0
1: Sequence output (Ø1 to Ø4) step is an excitation origin position.		n	
Excitation sequence signal monitor	<rsts.sph1-4></rsts.sph1-4>	RSTS register	(READ)
Bit 11: ø4, Bit 10: ø3, Bit 9: ø2, Bit 8: ø1 monitor		15	8
0: L level、1:H level		n n	n n
Mask of excitation sequence signal	<ocm2></ocm2>	Output mode command	(WRITE)
0: Outputs sequece signal from terminals Ø1 to Ø4		7	0
1: Make all terminals Ø1 to Ø4 L level.		n	

11-7. External mechanical input control

The following five signals can be used as mechanical position detection signals.

1) +EL, -EL signal

When an -EL signal of the same direction as operation is ON (Low level), the motor will stop immediately. Even if the signal then goes back to OFF, the motor will remain stopped.

When you operates the LSI with Start mode command.SCM5=1, \overline{INT} signal can be output when a motor stops . When this signal is ON, the motor cannot start in the same direction as this signal, even if a start command is given. However, an \overline{INT} signal will be output.

Pulse output is masked with Output mode command.OCM=1, +EL and -EL signals will become disabled. However you can monitor the status (RSTS.SPEL and RSTS.SMEL).

The input sensitivity of this signal can be selected with Output mode command.OCM4. When low sensitivity is selected, the LSI will not accept pulse signals that are shorter than 4 reference clock cycles long (approx. 800 ns with 4.9152 MHz clock). When high sensitivity is selected, the LSI will detect pulse signals shorter than 800 ns. The selection of input sensitivity is common among \overline{ORG} , $\overline{+EL}$, $\overline{-EL}$ and \overline{STP} signals.

2) +SD, -SD signal

When +SD, -SD signal control is enabled with Control mode command, CCM1=1, and if an \overline{SD} signal of the same direction as operation is turned ON in high-speed operation, the motor will start decelerating. If the \overline{SD} signal goes OFF, the motor will accelerate again.

When the \overline{SD} signal is enabled, giving a high speed start command while the signal is ON, the motor will not accelerate. It will operate at FL speed. While decelerating, the \overline{SD} signal will be ignored.

Regardless of the setting of Control mode command.CCM1, you can monitor these signals by status (RSTS.SPSD and RSTS.SMSD).

3) $\overline{\text{ORG}}$ signal

When $\overline{\text{ORG}}$ signal control is enabled (origin return operation) with Control mode command.CCM0=1, and the $\overline{\text{ORG}}$ signal is turned ON, the motor will stop immediately. After that, if the $\overline{\text{ORG}}$ signal goes OFF, the motor will remain stopped. With Start mode command.SCM5=1, an $\overline{\text{INT}}$ signal will be output when a motor stops by the $\overline{\text{ORG}}$ signal.

During this signal is ON, the motor cannot start even if a start command is given. However, an \overline{INT} signal will be output when a motor stops by the \overline{ORG} signal .

Regardless of the setting Control mode command.CCM0, you can monitor this signal by status (RSTS.SORG). The input sensitivity of this signal can be selected like +EL and -EL signals.

<u>11-8. Interrupt signal (INT) output</u>

This LSI can output an INT signal when a motor stopps, when the ramping-down point is reached, or when an external start signal is received.

To output an interrupt signal when a motor stops, use Start mode command.SCM5.

To output an interrupt signal when a ramping-down point is reached, use Register select command.RCM4.

To output an interrupt signal when an external start signal is received, use Register select command.RCM5.

By setting each interrupt control bit to "1," an INT signal will be output at each situation that is selected.

To reset the INT signal, place a "0" in the respective bit. When you want to mask without using the INT signal, set control bit to "0."

When any interrupt cause occurs among the control bits you set to "1", an INT signal is output. To determine which interrupt cause occurs, check main status (MSTS.ISTP, MSTS.ISDP and MSTS.ISTA).

The output status of an \overline{INT} signal can be check with the status (RSTS.SINT).

When using more than one LSI, each of the \overline{INT} terminals can be connected in a wired-OR configuration. However, in this case, connect to a pull up resistor (5K to 10K ohms) externally.

[How to use the \overline{INT} signal at a ramping-down point]

Comparing a down counter value (RMV) to a ramping-down value (SDP), when RMV become the same or smaller than SDP (RMV \leq SDP), the LSI will output an \overline{INT} signal.

When a ramping-down point is set by manual-setting (RENV.ASDP=0), SDP value = RDP setting value.

Only in positioning operation with high-speed start, a motor starts decelerates with RMV ≤ SDP.

Therefore, to operate positining at constant speed, this can be used as a comparator for residual pulses.

Interrupt control when a motor stops	<scm5></scm5>	Start mode command (WRITE)
0:Does not output INT signal when a motor stops.		7 0
1:Outputs INT signal when a motor stops.		0 0 n
Interrupt control at a ramping-down point	<rcm4></rcm4>	Register select command (WRITE)
0: Does not output INT signal at a ramping-down point.		7 0
1: Outputs INT signal at a ramping-down point.		1 0 - n
Interrupt control at the external start	<rcm5></rcm5>	Register select command (WRITE)
0: Does not output INT signal at the external start		7 0
1: Outputs INT signa at the external start.		1 0 n
Monitor of interrupt signal output	<rsts.sint></rsts.sint>	RSTSregister (READ)
0: All ISTP, ISDP and ISTA in the MSTS are OFF.		15 8
1: Eigher ISTP, ISDP or ISTA in the MSTS is ON.		n
Interupt monitor when a motor stops.	<msts.istp></msts.istp>	Main status (READ)
0: INT signal is being output when a motor stops.		7 0
1: INT signal is not output whe a motor stops.		n
Monitor of ramping-down point interrupt	<msts.isdp></msts.isdp>	Main status (READ)
0: INT signal is being output at a ramping-down point		7 0
1: INT signal is not output at a ramping-down point.		n -
Monitor of interrupt at the external start	<msts.ista></msts.ista>	Main status (READ)
0: INT signal is being output at the external start.		7 0
1: INT signal is not output at the external start.		n

<u>11-9. General-purpose port</u>

The number of general-purose ports to be used vaires according to the setting of compatible mode.

Output mode command. OCM5	RENV.46MD	Compatible mode name		
1	1	PCD46x1 mode		
1	0	PCD45x1 mode		
0	1	DCD4500 mode		
0	0	PCD4500 mode		

Terminal	Com	patible mode	name	Available conditions				
name	PCD46x1	PCD45x1	PCD4500	Available conditions				
OTS	OUT	OUT	OUT	Always available				
Ū / B	IN	-	-					
F/H	IN	-	-					
ø 1 / P1	IN / OUT	-	-	Available when excitation sequence output signals is				
ø 2 / P2	IN / OUT	-	-	unnecessary.				
ø 3 / P3	IN / OUT	-	-					
ø 4 / P4	IN / OUT	-	-					

OUT : can be used as a general-purpose output port.

IN : can be used as a general-purpose input port.

 $\mathsf{IN}\,/\,\mathsf{OUT}\,\,$: can be used as a general-purpose input or output port.

11-9-1. Terminal OTS

This terminal is only for a general-purpose output port. Therefore, it can be always used as a general-purpose port regardress of the setting of compatible mode.

Output level can be changed by Control mode command.CCM4.

Control of terminal OTS level	<ccm4></ccm4>	Control mode command				(W	/RIT	E)		
0: Makes terminal OTS L level.			7							0
1: Makes terminal OTS H level.			0	1	-	n	-	-	-	-

<u>11-9-2. Terminals Ū/B, F/H</u>

Originally intended purpose of this two terminals is to set excitation sequence output.

Therefore, only when excitation sequence output is not used, they can be used as general-purpose input ports. To monitor terminals, use RIOP.MUB and RIOP.MFH.

During excitation sequence output is used, this register can be monitor teminals status.

Monitor of \overline{U} / B terminal level	<ri>RIOP.MUB></ri>	RIOPregister	(READ)
0: Ū / B terminal is L level.		7	0
1: Ū / B terminal is H level.		00-n-	
Monitor of F / H terminal level	<ri>RIOP.MFH></ri>	RIOPregister	(READ)
0: F / H terminal is L level.		7	0
1: F / H terminal is H level.		00n	

<u>11-9-3. Terminals ø1 / P1, ø2 / P2, ø3 / P3, ø4 / P4</u>

These terminals are output terminals of excitation sequence output at default setting.

Therefore, when excitation sequence output is not used, they can be used as general-purpose input ports.

General-purpose input and general-purpose output can be selected per terminal. Even if general-purpose output port is selected, you can monitor terminal level.

Whether these are used as output terminals of excitation sequence signals (ø1 to ø4) or general-purpose port can be selected by the setting of REVN.IOPM.

When a general-purpose port is selected (RENV.IOPM=1), selection between general-purpose input and general-purpose output is made by RENV.IPM1 to IPM4

Select functions of terminal ø1/ P1 to ø4 / P4	<renv.iopm></renv.iopm>	RENV register	(WRITE)
0: Output terminals of excitation secqunce signals (ø1 to ø4)		15	8
1: Input / output terminal of general-purpose input / output port (F	P1 to P4)		n
Select specification of general-purpose input / output terminal P1	<renv.ipm1></renv.ipm1>	RENV register	(WRITE)
0: Terminal P1 is a general-purpose output terminal		15	8
1: Terminal P1 is a general-purpose input terminal		r	ו - - - -
Select specification of general-purpose input / output terminal P2	<renv.ipm2></renv.ipm2>	RENV register	(WRITE)
0: Terminal P2 is a general-purpose output terminal		15	8
1: Terminal P2 is a general-purpose input terminal		n -	
Select specification of general-purpose input / output terminal P3	<renv.ipm3></renv.ipm3>	RENV register	(WRITE)
0: Termianl P3 is a general-purpose output terminal		15	8
1: Terminal P3 is a general-purpose input terminal		- n	
Select specification of general-purpose input / output terminal P4	<renv.ipm4></renv.ipm4>	RENV register	(WRITE)
0: Terminal P4 is a general-purpose output terminal		15	8
1: Terminal P4 is a general-purpose input terminal		n	
Monitro of general-purose input terminal level	<riop.cp4-cp1></riop.cp4-cp1>	RIOP register	(READ)
Bit 0: Terminal P1 monitor, Bit1: Terminal P2 monitor,		7	0
Bit 2: Terminal P3 monitor, Bit3: Terminal P4 monitor,		00-	n n n n
Control of general-purpose output terminals (0:L leve,1:H level)	<riop.cp4-cp1></riop.cp4-cp1>	RIOP register	(WRITE)
Bit 0: P1 outputlevel control, Bit1: P2 output level control		7	0
Bit 2: P3 output level control, Bit3: P4 outputlevel control		00	n n n n

Note. Terminals ø1 / P1 to ø4 / P4 are output terminals ø1 to ø4 at default setting.

If you use these as general-purpose input terminal, please make sure that you insert a series resistor to prevent from short ciruit with external output circuit.

More than 1K ohm is needed to prevent from the breakage of PCD46x1. To prevent from the breakage of an external circuit, select a resistor least that current exceed the maximum output current of the external circuit.

12. Electrical characteristics

12-1. Absolute maximum rating

Item	Symbol	Rating	Unit
Power supply voltage	Vdd	-0.3 to +4.0	V
Input voltage	Vin	-0.3 to +7.0	V
Current consumption	Іоит	±30	mA
Storage temperature	Tstg	-65 to +150	°C

12-2. Recommended operating conditions

Item	Symbol	Rating	Unit
Power supply voltage	Vdd	3.0 to 3.6	V
Input voltage	Vin	-0.3 to +5.8	V
Ambient temperature	Ta	-40 to +85	°C

12-3. DC characteristics (in recommended operating conditions)

Item	Symbol	Condition	Min	Тур	Max	Unit
Static consumption current	IDDS	VI=VDD or GND,VDD=Max, no load			35	μA
Consumption current	ldd	PCD4611 Note1			3	mA
(CLK= 4.9152MHz)		PCD4621 Note1			5	
		PCD4641 Note1			9	
Consumption current	ldd	PCD4611 Note 2			5	mA
(CLK= 10.000MHz)		PCD4621 Note 2			9	
		PCD4641 Note 2			17	
Input leakage current	lu	VDD=Max,VIH=VDD,VIL=GND Note 3	-1		+1	μA
		VDD=Max,VIH=VDD,VIL=GND Note 4	-90		+1	
		VDD=Min,VIH=5.5V			+30	
HIGT input voltage	VIH	VDD=Max	2.0		5.8	V
LOW input voltage	VIL	VDD=Min	-0.3		0.8	V
HIGT output voltage	Vон	VDD=Min,IOH=-6mA	VDD-0.4			V
LOW output voltage	Vol	VDD=Min,IOL=6mA			0.4	V
HIGT output current	Іон	VDD=Min,VOH=VDD-0.4V			-6	mA
LOW output current	Iol	VDD=Min,VOL=0.4V			6	mA
Internal pull up resistance	Rpu	VI=VDD or GND Note 4	40	100	240	kohm
Input capacitance	С	f=1MHz, VDD=0V			10	pF
Output terminal capacitance	Co	f=1MHz, VDD=0V			10	pF
Input / Output terminal capacitance	Сю	f=1MHz, VDD=0V			10	pF

Note1. CLK=4.9152 MHz, when all axes operates in maximum speed (2.457 Mpps). (All output terminals have no load.)

Note 2. CLK=10.000 MHz, when all axes operates in maximum speed (4.999 Mpps). (All output terminals have no load.)

Note 3. D0 to D7, A0 to A3, RD, WR, CS, CLK terminal

Note 4. ORG, +EL, -EL, +SD, -SD, STA, STP, U / B, F / H, RST

ns

12-4. AC characteristics

<u>12-4-1. Reference clock</u>

40

t_{PWL}

12-4-2. Reset cycle

Reference clock LOW width

12-4-3. Read cycle

Note. Read is a virtual signal. Read = L only when \overline{CS} = L and \overline{RD} = L,

Item	Symbol	Condition	Min	Max	Unit
Address set up time	tar		0		ns
Address hold time	t RA		0		ns
Read signal width	t RR	t⊤⊤ = 0	34		ns
WRQ output delay time	t RT	C∟= 40 pF		28	ns
WRQ signal width	tтт	C∟= 40 pF	0	tclк × 3	ns
Read hold time	t _{TR}	ttt = 0	34		ns
Data output delay time	t _{RD}	C∟= 40 pF		34	ns
Data output precedence time	tos	CL= 40 pF	0		ns
Data float delay time	t DF	CL= 40 pF		18	ns

12-4-4. Write cycle

Note. Write is a virtual signal. Write = L only when \overline{CS} = L and \overline{WR} = L.

Item	Symbol	Condition	Min	Max	Unit
Address set up time	taw		0		ns
Address hold time	twa		0		ns
Write signal width	tww	tтт = 0	14		ns
WRQ output delay time	twт	C∟= 40 pF		28	ns
WRQ signal width	tтт	C∟= 40 pF	0	t _{CLK} × 3	ns
Write hold time	t⊤w	C∟= 40 pF	14		ns
Data setup time	tow		14		ns
Data hold time	two		0		ns

12-5. Operation timing

12-5-1. Accelerating / decelerating operation timing (Positioning operation)

12-5-2. Start timing

12-5-2-1. Command	start timing
CLK	
WR	Start command
BSY	Running
MSTS.FUP	Accelerating
+PO	
10	'
12-5-2-2. External st	
СГК	
SIA	
BSY	
101515.FUP	Initial pulse cycle
±PO	
<u>12-5-3. Stop timing</u>	
12-5-3-1. Positioning	operation complete timing
	0 1 2
CLK	
±PO	Last negative logic pulse
BSY	
12-5-3-2 Stop timing	aby STP ORG +FL -FL
	1 2 3
CLK	
+PO	Negative logic pulse
BSY	
Stop	
·	
Note. 1. Stop	is a viutual signal. Stop = Low level only when either STP, ORG, +EL or -EL.

- 2. If low sensitivity is selected with Output mode command.OCM4=1, rising of BSY delays 4 CLK cycles than the above figure.
 - 3. When $\overline{\text{Stop}}$ becomes Low level during $\pm PO$ is ON, $\overline{\text{BSY}}$ rises when $\pm PO$ is OFF.

12-5-4. Pulse output, sequence output timing

Note. \overline{WbfO} is a virtual signal and a \overline{WR} signal when the LSI is writing to the register WR buffer (7 to 0) after PIOP is selected by Register select command.

<u>13. External dimensions</u>

13-1. External dimensions of PCD4611 (48 pin QFP)

Unit:mm

13-2. External dimensions of PCD4621 (64 pin QFP)

Unit: mm

13-3. External dimensions of PCD4641 (100 pin QFP)

Unit : mm

14. Handling precautions

Precaution is described above in contex. Precaution that you should be careful especially is described here again.

14-1. Hardware design precautions

- 1. Never exceed the absolute maximum ratings, even for a very short time.
- 2. Take precautions against the influence of heat in the environment, and keep the temperature around the LSI as cool as possible.
- 3. Please note that ignoring the following may result in latching up and may cause overheating and smoke.
 - Make sure that the voltage on the input terminals are not more than 5.5V or less than GND.
 - Consider the timing when turning ON/OFF the power.
 - Be careful not to introduce external noise into the LSI.
 - Hold the unused input terminals to +3.3V or GND level.
 - Do not short-circuit the outputs.
 - Protect the LSI from inductive pulses caused by electrical sources that generate large voltage surges, and take appropriate precautions against static electricity.
- 4. Provide external circuit protection components so that overvoltages caused by noise, voltage surges, or static electricity are not fed to the LSI.
- 5. All signal terminals have TTL level interface and can be connected to 3.3 V-CMOS, TTL, and LVTTL devices. However, even if the output terminals are pulled up to 5 V, more than 3.3 V is not realized. Input terminals are not equipped with an over voltage prevention diode for the 3.3 V lines. If over voltage may be applied due to a reflection, ringing, or to inductive noise, we recommend inserting a diode to protect against over voltage.

14-2. Software design precautions

 If you use interrupt processing and access to PCD46x1 in interrupt processing, be carefuls about the followings. If during accessing to PCD46x1 in normal program (non-interrupt program) an interrupt request occurs, interrupt program starts and PCD46x1 is accessed in interrupt program, the contents of register RD buffer and register WR buffer are chaneged.

LSI processing returns to normal in this situation, writing value to register may change or read value from register is read wrongly.

Therefore, during accessing to PCD46x1 in normal program, make sure not to start up the interrupt program.

2. When you access to PCD46x1 from numeral tasks in multi-task processing, make sure not to make tasks switched during accessing.

14-3. Mechanical proecaution

1. When a deceleration stop has been specified to occur when the EL input turns ON with RENV.ELDS=1, the motor starts deceleration when the EL input is turned ON. Therefore, the motor stops after the mechanical position passes over the EL position. In this case, be careful to avoid collisions of mechanical systems.

14-4. Precautions for transporting and storing LSIs

- 1. Always handle LSIs carefully. Throwing or dropping LSIs may damage them.
- 2. Do not store LSIs in a location exposed to water droplets or direct sunlight.
- 3. Do not store the LSI in a location where corrosive gases are present, or in excessively dusty environments.
- 4. Store the LSIs in an anti-static storage container, and make sure that no physical load is placed on the LSIs.

14-5. Precautions for mounting

- 1. In order to prevent damage caused by static electricity, pay attention to the following.
 - Make sure to ground all equipment, tools, and jigs that are present at the work site.
 - Ground the work desk surface using a conductive mat or similar apparatus (with an appropriate resistance factor). Do not allow work on a metal surface, which can cause a rapid change in the electrical charge on the LSI (if the charged LSI touches the surface directly) due to extremely low resistance.
 - When picking up an LSI using a vacuum device, provide anti-static protection using a conductive rubber pick up tip. Anything which contacts the leads should have as high a resistance as possible.
 - When using a pincer that may make contact with the LSI terminals, use an anti-static model. Do not use a metal pincer, if possible.
 - Store unused LSIs in a PC board storage box that is protected against static electricity, and make sure there is adequate clearance between the LSIs. Never directly stack them on each other, as it may cause friction that can develop an electrical charge.
- 2. Operators must wear wrist straps which are grounded through approximately 1M-ohm of resistance.
- 3. Use low voltage soldering devices and make sure the tips are grounded.
- 4. Do not store or use LSIs, or a container filled with LSIs, near high-voltage electrical fields, such those produced by a CRT.
- 5. To heat the entire package for soldering, dry the packages for 20 to 36 hours at 125 ± 5°C. The packages should not be dried more than two times.
- 6. To reduce heat stress, we recommend far-infrared or mid-infared reflow for soldering by infrared reflow. Make sure to observe the following conditions and do not reflow more than two times.

Far-infrared heater (pre-heater)

Mid-infrared heater (reflow-heater)

 Package and board surface temperatures must never exceed 260°C and do not keep the temperature at 250 °C or higher for more than 10 seconds.

[Recommended temperature profile of a far/mid-infrared heater and hot air reflow]

- 7. When using hot air for solder reflow, the restrictions are the same as for infrared reflow equipment.
- 8. If you will use a slodering iron, the temperature at the leads must not exceed 350 degrees or higher and the time must not exceed for more than 5 seconds and more than twice per each terminal.

14-6. Other precautions

- 1. When the LSI will be used in poor environments (high humidity, corrosive gases, or excessive amounts of dust), we recommend applying a moisture prevention coating.
- 2. The package resin is made of fire-retardant material; however, it can burn. When baked or burned, it may generate gases or fire. Do not use it near ignition sources or flammable objects.
- 3. This LSI is designed for use in commercial apparatus (office machines, communication equipment, measuring equipment, and household appliances). If you use it in any device that may require high quality and reliability, or where faults or malfunctions may directly affect human survival or injure humans, such as in nuclear power control devices, aviation devices or spacecraft, traffic signals, fire control, or various types of safety devices, we will not be liable for any problem that occurs, even if it was directly caused by the LSI. Customers must provide their own safety measures to ensure appropriate performance in all circumstances.

<u>Appendix</u>

Appendix B. Register list

Accessible registers vary according to compatible mode.

Output mode command.OCM5	RENV.46MD	Compatible mode name		
0	0	DCD4500 compatible mode		
0	1	PCD4500 compatible mode		
1	0	PCD45x1 compatible mode		
1	1	PCD46x1 mode		

Register	Register Register description		Bit Setting range		Accessible/inaccessible by compatible mode			
name		length		PCD4500	PCD45x1	PCD46x1		
RMV	Preset feed amount / confirm	24	0 to 16,777,215	R/W	R/W	R/W		
	residual pulses							
RFL	Set FL speed	13	1 to 8,191	W	R/W	R/W		
RFH	Set FH speed	13	1 to 8,191	W	R/W	R/W		
RUD	Set acceleration / deceleration rate	16	2 to 65,535	W	R/W	R/W		
RMG	Set magnification	10	2 to 1,023	W	R/W	R/W		
RDP	Set a ramping-down point	24	0 to 16,777,215	W	R/W	R/W		
RIDL	Set idling pulses	3	0 to 7	W	R/W	R/W		
RENV	Set environmental data	16	0000(h) to FFFF(h)	W	R/W	R/W		
RCUN	Current position counter		0 to 16,777,215 or -8,388,608 to +8,388,607	-	-	R/W		
RSTS	Extended status monitor	24	000000(h) to FFFFF(h	-	R	R		
RIOP	Set general-purpose ports	6	00(h) to 3F(h)	-	-	R/W		
RSPD	Current speed monitor	13	0 to 8,191	-	-	R		

R/W : Both reading and writing are possible.

W : Only for writing.

R : Only for reading.

- : Neither treading nor writing are possible.

Appendix C. Status list

(ISTP) Interrupt request when a motor stops 0: Making a request 1: No request (ISDP) Ramping-down point interrupt request 0: Making a request 1: No request (ISTA) Exernal start interrupt request 0: Making a request 1: No request (BUSY) Operation status 0: Stopping 1: Running (PLSZ) RMV(residual pulses) 0:RMV ≠ 0 1:RMV = 0 (SDP) Ramping-down point 0:RMV > RDP 1:RMV ≤ RDP (FUP) Accelerating 0: No accelerating 1: Accelerating (FDWN) Decelerating 0: No decelerating 1: Decelerating

[Extended status]

SMEL) -EL terminal monitor	0: OFF (H level)	1: ON (L level)
SPEL) +EL terminal monitor	0: OFF (H level)	1: ON (L level)
SORG) ORG terminal monitor	0: OFF (H level)	1: ON (L level)
SSTP) STP terminal monitor	0: OFF (H level)	1: ON (L level)
SSTA) STA terminal monitor	0: OFF (H level)	1: ON (L level)
SMSD) -SD terminal monitor	0: OFF (H level)	1: ON (L level)
SPSD) +SD terminal monitor	0: OFF (H level)	1: ON (L level)
SPHZ) Excitation origin monitor	0: OFF	1: Excitation origin position

(SPH1) Ø 1 signal monitor	0: L level	1: H level
(SPH2)ø 2 signal monitor	0: L level	1: H level
(SPH3) Ø 3 signal monitor	0: L level	1: H level
(SPH4)ø 4 signal monitor	0: L level	1: H level
(SMPO) –PO / DIR terminal monitor	0: L level	1: H level
(SPPO) +PO / PLS terminal monitor	0: L level	1: H level
(SOTS) OTS terminal monitor	0: L level	1: H level
(SINT) Interrupt request	0: No request	1: Request

[RIDC register]

 (S43M) Monitor of RENV.46MD status
 0: 46MD = 0
 1: 46MD=1

 (IDC) Product infromation code
 1001: PCD4611
 1010: PCD4621
 1100: PCD4641
Appendix D. Differences from PCD45x1

D1. Outline of Differences

- 1. PCD46x1 is upward compatible with our PCD4500 and PCD45x1 series by software.
- 2. Because the power supply voltage, package and terminal assignment of PCD46x1 are different from those of PCD4511, PCD4521 and PCD4541, you need to prepare a new printed board.
- 3. 3.3V single power supply (Signal terminas have 5V tolerance functions.)
- 4. The package was downsized.
- 5. The Ambient operating temperature is -40 to +85 °C.
- 6. You can select two-pulse mode ((+) pulse and (-) pulse) and common pulse mode (pulse and direction signal) as output pulse mode.
- 7. The maximum output frequency is 2.4 Mpps. (When speed magnification is 300x.)
- 8. The function to set a ramping-down point automatically is added.
- 9. 24-bit current position counter is added for control of the current position.
- 10. Wait control terminal (\overline{WRQ}) is added for interface with CPU.
- 11. Sequence signals output terminals ø1 to ø4 are used as general-purpose input / output ports.
- 12. Function to monitor input terminal \overline{U} / B and \overline{F} / H to set sequence signal output is added. If sequence signal output is not used, these can be used as general-purpose input terminals.
- 13. You can select the method of stop by ORG, +EL, -EL, STP signals. (To stop immediately or to decelerate and stop)

D2. Specification comparative table

Differences are shown with hatching in the following table.

Item	PCD46x1 standard	PCD45x1 standard
Power source	3.0 to 3.6V	4.5 to 5.5 V
Reference clock	4.9152 MHz standard (Max. 10 MHz)	Same as PCD46x1
Range of settable positioning pulses	0 to 16,777,215 pulses	Same as PCD46x1
Range of settable number of	1 to 8,191 steps	Same as PCD46x1
Becommonded anod	1x to 200x (when using reference cleak: 4.0152 MHz)	1 to 50x
magnification range	When 1x : 1 to 8 101 pps	110 30X
magnification range	When 2x : 2 to 16 382 pps	
	When 300x : 300 to 2.457.300 pps	
Number of registers for setting	Two (FL and FH)	Same as PCD46x1
the speed		
Ramping-down point setting	0 to 16,777,215 (24 bit)	0 to 65,535 (16 bit)
range		
Ramping-down point setting	Manual setting or automatic setting	Only manual setting
method		
Acceleration / deceleration rate	2 to 65,535 (16 bit)	2 to 1,023 (10 bit)
setting range		
Current position counter	24 bit-UP / DOWN counter, one circuit/ axis	None
Typical operations	- Continuous operation	Same as PCD46x1
	- Preset operation (positioning)	
	- Origin return operation	
	- Timer operation	
Typical functions	- Linear and S-curve acceleration / deceleration	Same as PCD46x1
	- Stop immediately or decelerate and stop	except general-purpose
	- Speed change	port function
	- External start and stop function	
	- Idling pulse output function	
	- Excitation sequencing output for 2-phase stepper motors	
	- 4-bit general-purpose ports (It also can be used as sequence	
	output)	
Ambient operating temperature	-40 to + 85 °C	0 to +85 °C
Storage temperature	-65 to + 150 °C	-40 to +125 °C
Package	PCD4611: 48 pin QFP	PCD4511: 44 pin QFP
	(Dimension of mold: 7.0× 7.0 mm)	(10.0 x×10.0 mm)
	PCD4621: 64 pin QFP	(20.0 v14.0 mm)
	(Dimension of mold:10.0×10.0 mm)	PCD4541:100 nin OFP
	PCD4641:100 pin QFP	(20.0 x 14.0 mm)
Chin dosign	(Dimension of mold:14.0×14.0 mm)	Same as DCD46v1
		Same as PCD46X1

D3. Name change of internal registers

The description of register name is changed from register No. to abbreviation of usage in manual.

Register	name	- Eunction			
PCD46x1	PCD45x1	T unction			
RMV register	R0 register	Preset feed amount / confirm residual pulses			
RFL register	R1 register	Set FL speed			
RFH register	R2 register	Set FH speed			
RUD register	R3 register	Set acceleration / deceleration rate			
RMG register	R4 register	Set magnification			
RDP register	R5 register	Set ramping-down point			
RIDL register	R6 register	Set idling pulse			
RENV register	R7 register	Set environmental data			
RCUN register	-	Current position counter			
RSTS monitor	-	Extended status monitor			
RIOP register	-	Set general-purpose port			

D4. Register

Bit length is extended and registers are added.

			PCD46x1	PCD45x1			
Register	Contents	Bit	Setting range	Bit	Setting range		
		length		length			
RUD	Set acceleration /	16	2 to 65,535	10	2 to 1,023		
	deceleration rate						
RDP	Set ramping-down point	24	0 to 16,777,215	16	0 to 65,535		
RENV	Set environmental data	16	0000(h) to FFFF(h)	1	0 to 1 (PCD4541)		
RCUN	Current position counter	24	0 to 16,777,215 or	-	-		
			-8,388,608 to +8,388,607				
RIOP	Set general-purpose port	6	0 to 3F(h)	-	-		

Note. Only PCD4541 has the RENV register in PCD45x1 series.

PCD46x1 is upward compatible with our PCD4500 and PCD45x1 series by software.

Accessible register varies according to compatible mode.

Output mode command.OCM5	RENV.46MD	Compatible mode name
1	1	PCD46x1 mode
1	0	PCD45x1 mode
0	1	DCD4500 made
0	0	

Pogiator	Eurotion	PCD450	00 mode	PCD45>	(1 mode	PCD46x1 mode		
Register	Function	Write	Read	Write	Read	Write	Read	
RMV (R0)	Preset feed amount / confirm residual	0	0	0	0	0	0	
	pulses		1 1 1 1					
RFL (R1)	Set FL speed	0	Х	0	0	0	0	
RFH (R2)	Set FH speed	0	Х	0	0	0	0	
RUD (R3)	Set acceleration / deceleration rate	0	Х	0	0	0	0	
RMG (R4)	Set magnification	0	Х	0	0	0	0	
RDP (R5)	Set ramping-down point	0	Х	0	0	0	0	
RIDL (R6)	Set idling pulse	0	Х	0	0	0	0	
RENV (R7)	Set environmental data	Х	Х	Δ	Δ	0	0	
RCUN	Current position counter	Х	Х	Х	Х	0	0	
RSTS	Extended status monitor	Х	Х	Х	0	Х	0	
RIOP	Set general-purpose port	х	х	Х	Х	0	0	

O: Accessible, X: Inaccessible, Δ : Accessible only in PCD4541.

D5. Command

Bit definition of Register select commandvaries according to the setting RENV.46MD (0:PCD45x1 mode / 1:PCD46x1 mode). (The default setting is PCD45x1 mode.)

1. When PCD45x1 mode is used (RENV.46MD=0 : same as PCD45x1)

2. When PCD46x1 mode is used (RENV.46MD=1)

- 0: INT is not output (Same as PCD45x1 mode)
- 1: $\overline{\text{INT}}$ is output

Register select command	Selected register	Function
Bit 3 to 0		
0000	RMV register	Preset feed amount / confirm residual pulses
0001	RFL register	Set FL speed
0010	RFH register	Set FH speed
0011	RUD register	Set acceleration / deceleration rate
0100	RMG register	Set magnification
0101	RDP register	Set ramping-down point
0110	RIDL register	Set idling pulse
0111	RENV register	Set environmental data
1000	RCUN register	Current position counter
1001	RSTS monitor	Extended status monitor
1010	RIOP register	Set general-purpose port
Other	Prohibited	

Note: In PCD46x1 mode, register select code is decided by 4 bits because register increases.

Down counter operation control for positioning control in PCD 46x1 mode is operated with RENV.DCSP. (RENV.DCSP is described as R7(2) in PCD 45x1)

D6. Register change

D6-1. RENV (Environmental data setting) register

15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0	
IPM4	IPM3 IPM2	IPM1	IOPM	0	PREV	PSTP	ORRS	ORDS	ELDS	SPDS	ASDP	DCSP	46MD	PMD	
					•	•				-			· · ·		
Bit	Bit name						(Contents							
0	PMD	Select	pulse mo	ode out	put from	termina	als +PC) / PLS a	and -P	o / Dif	र.				
		0:	(+) direc	tion pu	ulse fron	n term	ninal +P	Oand (-) direct	ion puls	se from	termina	al -PO.		
		1:F	Pulses are	e outpu	it from te	rminal F	LC and	direction	signals	are outp	out from t	erminal	DIR.		
		()	H=(+) dire	ction, I	_=(-) dire	ction)									
1	46MD	Select	select unclion modes. Note in (Otput mode command OCM5=1) is selected)												
		(availa	available when extended monitor (Otput mode command OCM5=1) is selected)												
		0:1	CD45X1	equiva		10n, 1:P	CD46X1	all function	ons			4			
2	DCSP	Contro	Control the down counter for positioning operation (available when RENV.46MD=1)												
		0:0	U: Count backward every output pulse, 1: Stop counting												
2		Vvnen	When RENV.46MD=0, control command.CCM3 setting is used												
3	ASDF		elect the setting of ramping-down point control												
4	SDDS	Select	0 : Manual setting, 1 : Automatic setting												
5		Select	elect stop method by STP input (0 : Stop immediately, 1 : Decelerate and stop)												
6	ORDS	Select	stop met	hod by		innut (0	· Stop in	mediate		ecelerat	and sto		lop)		
7	ORDS	Set au	elect stop method by OKG input (0. Stop inmediately, 1. Decelerate and Stop)												
'	ONIXO	0 • 4	Automatic	reset		Junent	005110110	ounter)							
		1 . 4	Automatic	reset	ON at the	falling	edae of	ORG in	inut (OF	F to ON) in oria	in returi	n operat	tion	
8	PSTP	Set on	eration of	f RCUI	V (curren	t positio	n counte	r)	put (or	1 10 011	<u>) ong</u>		il opora		
Ŭ	1011	0:0	Count eve	erv puls	e output	(Count	even wh	en Outpu	ıt mode	comma	nd.OCM	1=1)			
		1:5	Stop coun	itina	o oatpat	(000		on o aipo				,			
9	PREV	Set the	e count di	rection	of RCU	N (curre	nt positic	n counte	r)						
		0:0	Count for	ward in	(+) direc	tion ope	eration ar	nd count l	, backwa	red in (-)	directio	n operat	ion.		
		1:0	Count bac	kward	in (+) dir	ection o	peration	and cour	nt forwa	rd in (-) (direction	operatic	on.		
10	Undefined	Alway	/s set to	0.			-					-			
11	IOPM	Select	functions	s of ter	minal ø ⁻	I/ P1 to	ø4/ P4								
		0:1	Jse ø1 to) ø4 (s	equence	signals) as outp	ut termin	als						
		1:1	Jse P1 to	P4 (ge	eneral-pu	rpose ir	put / oup	out port) a	as input	/ output	terminal	s			
12	IPM1	Select	specifica	ation o	of genera	al-purpo	ose inpl	ıt / outpu	ut termi	inal P1					
		(0:	general	-purpo	oseoutpu	ut termi	nal, 1: g	eneral-p	ourpose	e input t	erminal) Note	e 2		
13	IPM2	Select	specifica	ation c	of genera	al-purpo	ose inpl	ıt / outpı	ut termi	inal P2					
		(0:	general	-purpo	oseoutpu	ut termi	nal, 1: g	eneral-p	ourpose	e input t	erminal) Note	e 2		
14	IPM3	Select	specifica	ation c	of genera	al-purpo	ose inpu	ıt / outpu	ut termi	inal P3					
		(0:	general	-purpo	oseoutpu	ut termi	nal, 1: g	eneral-p	ourpose	e input t	erminal) Note	e 2		
15	IPM4	Select	specifica	ation o	of genera	al-purpo	ose inpu	ıt / outpu	ut termi	inal P4					
		(0:	general	-purpo	oseoutpu	ut termi	nal, 1: g	eneral-p	ourpose	e input t	erminal) Note	e 2		
31 to16	6	For de	livery ins	pectior	n (Alway	s set to	0)								

Note 1. RENV.46MD setting is enabled when Output mode command.OCM5=1 (extended monitor) Note 2. RENV.IPM1 to IPM4 setting are disabled when RENV.IOPM=0.

D6-2. RCUN (Current position counter)

23			20		10	6		12	2			8	3				4			0
		1					1	1		1	1			1	1			1		
		•					•			•										
							•									1				
	•	1				1		•			1				1					

This is a 24-bit up/down counter to count output pulse train.

This value becomes FFFFF(h) after counting down from 000000(h) and becomes 000000(h) after counting down from FFFFF(h).

You can write / read this resister using CPU.

In origin return operation, you can reset the counter automatically at the origin position. (RENV.ORRS=1)

D6-3. RSTS (Extended status) monitor

The contents of status 1 and 2 are the same as those of PCD45x1.

D6-4. RIOP (General-purpose port setting) register

When excitation output signal (\emptyset 1 to \emptyset 4) is not used, terminal \emptyset 1 to \emptyset 4 can be used as input-output ports and the terminal \overline{U}/B and the terminal \overline{F}/H can be used as general-purpose input terminals with RENV.IOPM=1.

Note.

- When RENV.IOPM =0 (ø1 to 4 signal output) is selected, writing to the RIOP is disabled.
- When RENV.IOPM =1 in writing, only data of general output terminals that are set as output port in RENV.IPM 1 to 4 is enabled among bit 0 to 3.
- In reading, status of 6 terminals can be read without any reference to the setting of RENV.IOPM and RENV.IPMn
- Because (0 to 4) value of RSTS.SPH 1 to 4 are always to monitor excitation signal (LSI's internal signals), those do not show status of terminal ø 1 to 4 with RENV.IOPM =1.

D7. Internal monitor

1. PCD45x1 mode (Hatching : Difference from PCD46x1 mode)

Register		Address							
select No.		A1=0, A0=0	A1=0,A0=1	A1=1,A0=0	A1=1,A0=1				
C	000 Main s		RMV lower data	RMV middle data	RMV upper data				
C	001 Main status		RFL lower data	RFL upper data	Start mode command				
C	010	Main status	RFH lower data	RFH upper data	Control mode command				
0	011 Main status		RUD lower data	RUD upper data	Register select command				
1	100	Main status	RMG lower data	RMG upper data	Output mode command				
1	101	Main status	RDP lower data	RDP upper data	RENV lower data				
1	110 Main		RIDL data	RSPD lower data	RSPD upper data				
1	111	Main status	RSTS lower data	RSTS upper data	RIDC data				

2. PCD46x1 mode (Hatching : Difference from PCD45x1 mode)

			-				
Regi	ster			Address			
select No.		A1=0, A0=0	A1=0,A0=1	A1=1,A0=0	A1=1,A0=1		
0000	000	Main status	RMV lower data	RMV middle data	RMV upper data		
0001	001	Main status	RFL lower data	RFL upper data	Start mode command		
0010	010	Main status	RFH lower data	RFH upper data	Control mode command		
0011	011	Main status	RUD lower data	RUD upper data	Register select command		
0100	100	Main status	RMG lower data	RMG upper data	Output mode command		
0101	101	Main status	RDP lower data	RDP middle data	RDP upper data		
0110	110	Main status	RIDL data	RSPD lower data	RSPD upper data		
0111	111	Main status	RENV lower data	RENV upper data	RIDC data		
1000	-	Main status	RCUN lower data	RCUN middle data	RCUN upper data		
1001	-	Main status	RSTS lower data	RSTS upper data	(Always 00h)		
1010	-	Main status	RIOP data	(Always 00h)	(Always 00h)		

RIDC monitor

Function mode monitor (=RENV.46MD)

Chip identification monitor

0001:PCD4511	1001:PCD4611
0010:PCD4521	1010:PCD4621
0100:PCD4541	1100:PCD4641

D8. Electrical Characteristics

D8-1. Absolute maximum ratings

Item	Symbol	PCD46x1	PCD45x1	Unit
Power supply voltage	V _{DD}	-0.3 to +4.0	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to +7.0	-0.3 to V _{DD} +0.3	V
Output current	I _{IN}		±10	mA
Storage temperature	T _{stg}	-65 to +150	-40 to +125	°C

D8-2. Recommended operating conditions

Item	Symbol	PCD46x1	PCD45x1	Unit
Power supply voltage	V _{DD}	+3.0 to +3.6	+4.5 to +5.5	V
Ambient temperature	Ta	-40 to +85	0 to +85	°C
LOW input voltage 1	V _{IL}	-0.3 to +0.8	0 to +0.8	V
LOW input voltage 2		-0.3 to +0.8	0 to +1.0	
HIGH output voltage 1	V	+2.0 to +5.8	+2.2 to V _{DD}	V
HIGH output voltage 2	VIH	+2.0 to +5.8	+4.0 to V_{DD}	v

1. Other than CLK input

2. CLK input

D8-3. DC characteristics

Item	Symbol	Condition	PCD46x1	PCD45x1	Unit
Current consumption (1)		PCD4x11	5 max	17 max	mA
	ldd	PCD4x21	9 max	34 max	
		PCD4x41	17 max	65 max	
Output leakage current	loz		-1 to1	-10 to +10	μA
Input capacitance	CIN		10 max	7 max	pF
LOW input current (2)	١L	VIN = GND	-1 to1	-10 to +10	μA
LOW input current (3)			-90 to +1	-200 to -10	
HIGH input current (4)	Ін	VIN = VDD	-1 to +1	-10 to +10	μA
LOW output current (5)			6 max	8 max	mA
LOW output current (6)	Iol		6 max	16 max	
LOW output current (7)			6 max	16 max	
HIGH output current (5)	le		-6 max	-8 max	mA
HIGH output current (6)	IOH		-6 max	-16 max	
LOW output current	Vol	lo∟= max	0.4 max	0.4 max	V
HIGH output voltage	Vон	Іон = -1uA	Vdd - 0.4 min	Vdd - 0.05 min	V
		Іон = max	Vdd - 0.4 min	2.4 min	
Internal pull-up resistor	R∪		40 to 240	25 to 500	Kohm

(1) Reference clock 10 MHz, 4,999,390 pps output, no load

(2) D0 to D7, A0 to A3, \overline{RD} , \overline{WR} , \overline{CS} , CLK

(3) ORG, +EL, -EL, +SD, -SD, STA, STP, U/B, F/H, RST

(4) Terminal (2) or (3)

(5) D0 to D7 of all PCD4xx1, OTS BSY, +PO, -PO and ø1 to ø4 of PCD4x21and PCD4x41,

(6) OTS, BSY, +PO, -PO, ø1 to ø4 of PCD4x11

(7) INT

April 26, 2013 No. DA70133-1/0E